Analysis and prediction of battery temperature in thermal management system coupled SiC foam-composite phase change material and air

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-06 DOI:10.1016/j.est.2024.114503
{"title":"Analysis and prediction of battery temperature in thermal management system coupled SiC foam-composite phase change material and air","authors":"","doi":"10.1016/j.est.2024.114503","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries crucially rely on an effective battery thermal management system (BTMS) to sustain their temperatures within an optimal range, thereby maximizing operational efficiency. Incorporating bio-based composite phase change material (CPCM) into BTMS enhances efficiency and sustainability. This study commences by blending lauric acid and myristic acid in a 7: 3 mass ratio to synthesize a bio-based CPCM, following which the thermophysical properties of this CPCM are tested. Subsequently, the CPCM is integrated into a SiC foam and coupled with air to develop a novel BTMS. Then the effects of air velocity and initial temperature on the temperature of the battery pack are analyzed. Finally, the RIME-Convolutional Neural Network (CNN)- Self-Attention (SA)- Gated Recurrent Unit (GRU) model is established to predict the temperature of the battery in this BTMS. The results indicate that the latent heat of the CPCM is 97.98 J/g, melting at 35 °C upon heating. The incorporation of SiC foam-CPCM effectively reduces battery temperatures. When the air velocity is set at 3 m/s, the battery temperature remains below 40 °C during a discharge rate of 2C. Notably, the CPCM melts at higher initial temperatures, effectively mitigating the temperature rise in the battery pack. The RIME-CNN-SA-GRU model exhibits remarkable accuracy, with a maximum prediction error of 0.56 °C and a RMSE of 0.23, precisely capturing the trend of a sharp temperature rise at the end of discharge. This study presents an efficient solution for lithium-ion battery thermal management and temperature prediction.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040891","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries crucially rely on an effective battery thermal management system (BTMS) to sustain their temperatures within an optimal range, thereby maximizing operational efficiency. Incorporating bio-based composite phase change material (CPCM) into BTMS enhances efficiency and sustainability. This study commences by blending lauric acid and myristic acid in a 7: 3 mass ratio to synthesize a bio-based CPCM, following which the thermophysical properties of this CPCM are tested. Subsequently, the CPCM is integrated into a SiC foam and coupled with air to develop a novel BTMS. Then the effects of air velocity and initial temperature on the temperature of the battery pack are analyzed. Finally, the RIME-Convolutional Neural Network (CNN)- Self-Attention (SA)- Gated Recurrent Unit (GRU) model is established to predict the temperature of the battery in this BTMS. The results indicate that the latent heat of the CPCM is 97.98 J/g, melting at 35 °C upon heating. The incorporation of SiC foam-CPCM effectively reduces battery temperatures. When the air velocity is set at 3 m/s, the battery temperature remains below 40 °C during a discharge rate of 2C. Notably, the CPCM melts at higher initial temperatures, effectively mitigating the temperature rise in the battery pack. The RIME-CNN-SA-GRU model exhibits remarkable accuracy, with a maximum prediction error of 0.56 °C and a RMSE of 0.23, precisely capturing the trend of a sharp temperature rise at the end of discharge. This study presents an efficient solution for lithium-ion battery thermal management and temperature prediction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耦合碳化硅泡沫复合相变材料和空气的热管理系统中的电池温度分析与预测
锂离子电池主要依靠有效的电池热管理系统(BTMS)将其温度维持在最佳范围内,从而最大限度地提高运行效率。在 BTMS 中加入生物基复合相变材料 (CPCM) 可提高效率和可持续性。本研究首先以 7:3 的质量比混合月桂酸和肉豆蔻酸,合成生物基 CPCM,然后测试这种 CPCM 的热物理性质。随后,将 CPCM 集成到 SiC 泡沫中并与空气耦合,开发出一种新型 BTMS。然后分析了空气速度和初始温度对电池组温度的影响。最后,建立了 RIME-卷积神经网络(CNN)-自注意(SA)-门控递归单元(GRU)模型,以预测 BTMS 中电池的温度。结果表明,CPCM 的潜热为 97.98 J/g,加热时在 35 °C 熔化。加入碳化硅泡沫 CPCM 可有效降低电池温度。当气流速度设定为 3 米/秒时,电池温度在放电速度为 2 摄氏度时保持在 40 摄氏度以下。值得注意的是,CPCM 会在较高的初始温度下熔化,从而有效缓解电池组的温升。RIME-CNN-SA-GRU 模型表现出卓越的准确性,最大预测误差为 0.56 °C,均方根误差为 0.23,准确捕捉到了放电结束时温度急剧上升的趋势。这项研究为锂离子电池热管理和温度预测提供了一种高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Green synthesis of SiOx/C-TiO2 with continuous conductive network towards enhancing lithium storage performance Neutral-state black electrochromic polymer with enhanced supercapacitor electrode performance An improved barrier function double integral sliding mode control of SynRM for hybrid energy storage system-based electric vehicle Analysis and prediction of battery temperature in thermal management system coupled SiC foam-composite phase change material and air Role of pumped hydro storage plants for flood control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1