Stability analysis of a departure time choice problem with atomic vehicle models

IF 5.8 1区 工程技术 Q1 ECONOMICS Transportation Research Part B-Methodological Pub Date : 2024-11-01 DOI:10.1016/j.trb.2024.103039
Koki Satsukawa , Kentaro Wada , Takamasa Iryo
{"title":"Stability analysis of a departure time choice problem with atomic vehicle models","authors":"Koki Satsukawa ,&nbsp;Kentaro Wada ,&nbsp;Takamasa Iryo","doi":"10.1016/j.trb.2024.103039","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we analyse the global stability of the equilibrium in a departure time choice problem using a game-theoretic approach that deals with atomic users. We first formulate the departure time choice problem as a strategic game in which atomic users select departure times to minimise their trip cost; we call this game the ‘departure time choice game’. The concept of the epsilon-Nash equilibrium is introduced to ensure the existence of pure-strategy equilibrium corresponding to the departure time choice equilibrium in conventional fluid models. Then, we prove that the departure time choice game is a weakly acyclic game. By analysing the convergent better responses, we clarify the mechanisms of global convergence to equilibrium. This means that the epsilon-Nash equilibrium is achieved by sequential better responses of users, which are departure time changes to improve their own utility, in an appropriate order. Specifically, the following behavioural rules are important to ensure global convergence: (i) the adjustment of the departure time of the first user departing from the origin to the corresponding equilibrium departure time and (ii) the fixation of users to their equilibrium departure times in order (starting with the earliest). Using convergence mechanisms, we construct evolutionary dynamics under which global stability is guaranteed. We also investigate the stable and unstable dynamics studied in the literature based on convergence mechanisms, and gain insight into the factors influencing the different stability results. Finally, numerical experiments are conducted to demonstrate the theoretical results.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"189 ","pages":"Article 103039"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we analyse the global stability of the equilibrium in a departure time choice problem using a game-theoretic approach that deals with atomic users. We first formulate the departure time choice problem as a strategic game in which atomic users select departure times to minimise their trip cost; we call this game the ‘departure time choice game’. The concept of the epsilon-Nash equilibrium is introduced to ensure the existence of pure-strategy equilibrium corresponding to the departure time choice equilibrium in conventional fluid models. Then, we prove that the departure time choice game is a weakly acyclic game. By analysing the convergent better responses, we clarify the mechanisms of global convergence to equilibrium. This means that the epsilon-Nash equilibrium is achieved by sequential better responses of users, which are departure time changes to improve their own utility, in an appropriate order. Specifically, the following behavioural rules are important to ensure global convergence: (i) the adjustment of the departure time of the first user departing from the origin to the corresponding equilibrium departure time and (ii) the fixation of users to their equilibrium departure times in order (starting with the earliest). Using convergence mechanisms, we construct evolutionary dynamics under which global stability is guaranteed. We also investigate the stable and unstable dynamics studied in the literature based on convergence mechanisms, and gain insight into the factors influencing the different stability results. Finally, numerical experiments are conducted to demonstrate the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原子车辆模型对出发时间选择问题进行稳定性分析
在本研究中,我们采用博弈论的方法分析了出发时间选择问题中均衡的全局稳定性。我们首先将出发时间选择问题表述为一个战略博弈,在这个博弈中,原子用户选择出发时间以最小化其旅行成本;我们称这个博弈为 "出发时间选择博弈"。我们引入了ε-纳什均衡的概念,以确保存在与传统流体模型中出发时间选择均衡相对应的纯策略均衡。然后,我们证明出发时间选择博弈是弱非循环博弈。通过分析收敛的更好反应,我们阐明了全局收敛到均衡的机制。这意味着ε-纳什均衡是通过用户按适当顺序依次做出更好的反应(即改变出发时间以提高自身效用)来实现的。具体来说,以下行为规则对确保全局收敛非常重要:(i) 将第一个从原点出发的用户的出发时间调整为相应的均衡出发时间;(ii) 按顺序(从最早出发的用户开始)将用户的均衡出发时间固定下来。利用收敛机制,我们构建了保证全局稳定的演化动力学。我们还基于收敛机制研究了文献中研究的稳定和不稳定动力学,并深入了解了影响不同稳定性结果的因素。最后,我们进行了数值实验来证明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Research Part B-Methodological
Transportation Research Part B-Methodological 工程技术-工程:土木
CiteScore
12.40
自引率
8.80%
发文量
143
审稿时长
14.1 weeks
期刊介绍: Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.
期刊最新文献
Making the most of your private parking slot: Strategy-proof double auctions-enabled staggered sharing schemes Editorial Board Safety, liability, and insurance markets in the age of automated driving Station-based, free-float, or hybrid: An operating mode analysis of a bike-sharing system Formulations and branch-and-cut algorithms for the heterogeneous fleet vehicle routing problem with soft time deadlines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1