Chenyi Fu , Ning Zhu , Michael Pinedo , Shoufeng Ma
{"title":"Station-based, free-float, or hybrid: An operating mode analysis of a bike-sharing system","authors":"Chenyi Fu , Ning Zhu , Michael Pinedo , Shoufeng Ma","doi":"10.1016/j.trb.2024.103105","DOIUrl":null,"url":null,"abstract":"<div><div>The profit-oriented bike-sharing industry, such as Mobike in China and Limebike in the USA, has widely adopted the free-float mode, which allows users to rent and return bikes without any restrictions with regard to stations. Compared to the traditional station-based mode, this new mode improves convenience and satisfies a variety of travel demands, but it also results in higher operating costs and lower number of available bikes (the number of bikes can be found). So far, no theoretical study has been done comparing the performance levels of the two different operating modes. Some bike-sharing firms are now attempting to design a hybrid operating mode that combines the advantages of the two modes. We design a mixed-integer program to model these three operating modes under different operating conditions. The model captures some of the new features of free-float bike-sharing systems. These new features include discounts for returning bikes to designated stations, different numbers of available bikes at stations and free-float areas, differences in station-based return levels as well as in convenience levels in the three operating modes. This study also considers the interactions between the free-float and station-based modes in meeting the demand and in managing relocation processes. Extensive numerical experiments are conducted and the results reveal that in more than half of the total cases under different parameter settings, the profits of the hybrid mode outperform the profits of the other two modes. The station-based mode is suitable for settings with high convenience levels, low number of available free-float bikes, and limited budgets for bike acquisitions, whereas the free-float mode can ensure high profits with low convenience levels and a large number of bikes being available. Our models can serve as a decision-making tool for bike-sharing firms in their selection of an optimal operating mode.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"191 ","pages":"Article 103105"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524002297","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The profit-oriented bike-sharing industry, such as Mobike in China and Limebike in the USA, has widely adopted the free-float mode, which allows users to rent and return bikes without any restrictions with regard to stations. Compared to the traditional station-based mode, this new mode improves convenience and satisfies a variety of travel demands, but it also results in higher operating costs and lower number of available bikes (the number of bikes can be found). So far, no theoretical study has been done comparing the performance levels of the two different operating modes. Some bike-sharing firms are now attempting to design a hybrid operating mode that combines the advantages of the two modes. We design a mixed-integer program to model these three operating modes under different operating conditions. The model captures some of the new features of free-float bike-sharing systems. These new features include discounts for returning bikes to designated stations, different numbers of available bikes at stations and free-float areas, differences in station-based return levels as well as in convenience levels in the three operating modes. This study also considers the interactions between the free-float and station-based modes in meeting the demand and in managing relocation processes. Extensive numerical experiments are conducted and the results reveal that in more than half of the total cases under different parameter settings, the profits of the hybrid mode outperform the profits of the other two modes. The station-based mode is suitable for settings with high convenience levels, low number of available free-float bikes, and limited budgets for bike acquisitions, whereas the free-float mode can ensure high profits with low convenience levels and a large number of bikes being available. Our models can serve as a decision-making tool for bike-sharing firms in their selection of an optimal operating mode.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.