Ning Ma, Hailong Ye, Clarence Edward Choi, Jiaqi Zhang
{"title":"Strength enhancement of Ca(OH)2 activated ground granulated blast furnace slag-stabilized dredged sediments using Na2CO3","authors":"Ning Ma, Hailong Ye, Clarence Edward Choi, Jiaqi Zhang","doi":"10.1007/s11440-024-02470-1","DOIUrl":null,"url":null,"abstract":"<div><p>The efficiency of alkali-activated ground granulated blast furnace slag in stabilizing dredged sediments with high water contents is suboptimal because the activators become diluted. To improve stabilization efficiency, additives such as nano-CaCO<sub>3</sub> are proposed. However, some of the proposed additives may not be practical owing to their high costs. This study experimentally investigates the addition of Na<sub>2</sub>CO<sub>3</sub> for the stabilization of dredged sediment with high water contents (i.e., 100%) using Ca(OH)<sub>2</sub>-activated slag. Experimental results show the optimal content of Na<sub>2</sub>CO<sub>3</sub> to obtain the highest 28-day unconfined compressive strength of stabilized sediments is 0.2% gravimetrically. Below the optimal content, the strength increases with Na<sub>2</sub>CO<sub>3</sub> content. Above the optimal content, a decrease in strength is observed. By examining the reaction products and microstructure of the stabilized dredged sediments, it is observed that the coupling mechanism of cation exchange and calcite precipitation promotes the development of finer capillary pores, leading to a reduction in interpore connectivity and lower structural heterogeneity of the fine capillary pores. Experimental evidence from this study broadens the practical applications of sustainable soil stabilization using additives.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"945 - 964"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02470-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02470-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of alkali-activated ground granulated blast furnace slag in stabilizing dredged sediments with high water contents is suboptimal because the activators become diluted. To improve stabilization efficiency, additives such as nano-CaCO3 are proposed. However, some of the proposed additives may not be practical owing to their high costs. This study experimentally investigates the addition of Na2CO3 for the stabilization of dredged sediment with high water contents (i.e., 100%) using Ca(OH)2-activated slag. Experimental results show the optimal content of Na2CO3 to obtain the highest 28-day unconfined compressive strength of stabilized sediments is 0.2% gravimetrically. Below the optimal content, the strength increases with Na2CO3 content. Above the optimal content, a decrease in strength is observed. By examining the reaction products and microstructure of the stabilized dredged sediments, it is observed that the coupling mechanism of cation exchange and calcite precipitation promotes the development of finer capillary pores, leading to a reduction in interpore connectivity and lower structural heterogeneity of the fine capillary pores. Experimental evidence from this study broadens the practical applications of sustainable soil stabilization using additives.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.