Principles for satellite monitoring of vegetation carbon uptake

I. Colin Prentice, Manuela Balzarolo, Keith J. Bloomfield, Jing M. Chen  , Benjamin Dechant, Darren Ghent, Ivan A. Janssens, Xiangzhong Luo  , Catherine Morfopoulos, Youngryel Ryu, Sara Vicca, Roel van Hoolst
{"title":"Principles for satellite monitoring of vegetation carbon uptake","authors":"I. Colin Prentice, Manuela Balzarolo, Keith J. Bloomfield, Jing M. Chen \n , Benjamin Dechant, Darren Ghent, Ivan A. Janssens, Xiangzhong Luo \n , Catherine Morfopoulos, Youngryel Ryu, Sara Vicca, Roel van Hoolst","doi":"10.1038/s43017-024-00601-6","DOIUrl":null,"url":null,"abstract":"Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially regarding temporal trends in GPP. Many models invoke the light use efficiency principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. However, these models vary in their assumptions about the controls of light use efficiency and typically depend on many, poorly constrained parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, improving the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilizing auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve model-based detection of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux-tower network will support systematic evaluation of GPP models. Improved reliability of GPP and biomass production estimates will better characterize temporal variation and advance understanding of the response of the terrestrial carbon cycle to environmental change. Global patterns and trends in primary production are estimated using remote-sensing-based models. This Perspective outlines ways to ensure that the next generation of model predictions robustly characterizes how this key element of the terrestrial carbon cycle is changing.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"818-832"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-024-00601-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially regarding temporal trends in GPP. Many models invoke the light use efficiency principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. However, these models vary in their assumptions about the controls of light use efficiency and typically depend on many, poorly constrained parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, improving the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilizing auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve model-based detection of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux-tower network will support systematic evaluation of GPP models. Improved reliability of GPP and biomass production estimates will better characterize temporal variation and advance understanding of the response of the terrestrial carbon cycle to environmental change. Global patterns and trends in primary production are estimated using remote-sensing-based models. This Perspective outlines ways to ensure that the next generation of model predictions robustly characterizes how this key element of the terrestrial carbon cycle is changing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卫星监测植被碳吸收的原则
基于遥感的数值模式利用卫星对植被光吸收的测量来估算全球总初级生产力(GPP)的模式和趋势--这是陆地碳循环的基础。在本《视角》中,我们将讨论利用这些模型估算 GPP 所面临的挑战,并探讨提高其可靠性的方法。目前的模型在结构上差异很大,产生的结果也不尽相同,尤其是在 GPP 的时间趋势方面。许多模型都引用光利用效率原理来估算 GPP,该原理将光吸收与光合作用和植物生物量生产联系起来。然而,这些模型对光利用效率控制的假设各不相同,而且通常依赖于许多约束性较差的参数。生态进化优化原理可以大大减少参数要求,提高 GPP 估算的准确性和一致性,并解释其与环境驱动因素的关系。整合不同卫星和传感器的数据,并利用辅助光学波段检索,可以提高时空分辨率,改进基于模型的植被生理检测,包括干旱胁迫。扩展和协调涡度协方差通量塔网络将支持对 GPP 模型进行系统评估。提高 GPP 和生物量生产估算的可靠性将更好地描述时间变化特征,并促进对陆地碳循环对环境变化的响应的理解。全球初级生产力的模式和趋势是利用遥感模型估算的。本视角概述了如何确保下一代模式预测能够有力地描述陆地碳循环的这一关键要素是如何变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planetary Boundaries guide humanity’s future on Earth Seasonal CO2 amplitude in northern high latitudes Principles for satellite monitoring of vegetation carbon uptake Electric cooking as a clean and just energy solution Focusing on architectural beauty to reduce construction waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1