Toward Flexible and Stretchable Organic Solar Cells: A Comprehensive Review of Transparent Conductive Electrodes, Photoactive Materials, and Device Performance
{"title":"Toward Flexible and Stretchable Organic Solar Cells: A Comprehensive Review of Transparent Conductive Electrodes, Photoactive Materials, and Device Performance","authors":"Yongdie Yan, Bowen Duan, Min Ru, Qinyin Gu, Sunsun Li, Wenchao Zhao","doi":"10.1002/aenm.202404233","DOIUrl":null,"url":null,"abstract":"Flexible and stretchable organic solar cells (FOSCs and SOSCs) hold immense potential due to their versatility and applicability in emerging areas such as wearable electronics, foldable devices, and biointegrated systems. Despite these promising applications, several challenges remain, primarily related to the mechanical durability, material performance, and scalability required for commercialization. This review comprehensively highlights recent advancements in the design and fabrication of FOSCs and SOSCs, with a particular emphasis on key functional layers, including transparent conductive electrodes, interfacial layers, photoactive materials, and top electrodes. Innovations in material design, such as active layers and transparent conductive electrodes with improved flexibility, are discussed alongside developments in device processes to achieve power conversion efficiencies exceeding 19%. Furthermore, the review addresses remaining challenges, including the need for scalable manufacturing techniques and enhanced mechanical robustness under strain. Finally, the prospects of FOSCs and SOSCs are analyzed, providing insights into how these technologies can contribute to the development of sustainable, high‐performance power sources for wearable electronic devices and other flexible electronics. This review offers valuable insights, bringing the commercialization of wearable, high‐performance FOSCs and SOSCs closer to reality.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible and stretchable organic solar cells (FOSCs and SOSCs) hold immense potential due to their versatility and applicability in emerging areas such as wearable electronics, foldable devices, and biointegrated systems. Despite these promising applications, several challenges remain, primarily related to the mechanical durability, material performance, and scalability required for commercialization. This review comprehensively highlights recent advancements in the design and fabrication of FOSCs and SOSCs, with a particular emphasis on key functional layers, including transparent conductive electrodes, interfacial layers, photoactive materials, and top electrodes. Innovations in material design, such as active layers and transparent conductive electrodes with improved flexibility, are discussed alongside developments in device processes to achieve power conversion efficiencies exceeding 19%. Furthermore, the review addresses remaining challenges, including the need for scalable manufacturing techniques and enhanced mechanical robustness under strain. Finally, the prospects of FOSCs and SOSCs are analyzed, providing insights into how these technologies can contribute to the development of sustainable, high‐performance power sources for wearable electronic devices and other flexible electronics. This review offers valuable insights, bringing the commercialization of wearable, high‐performance FOSCs and SOSCs closer to reality.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.