Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-11-20 DOI:10.1002/aenm.202404418
Shaocong Tang, Jiabao Li, Quan Yuan, Tian Wang, Weiwei Xiang, Jae Su Yu
{"title":"Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification","authors":"Shaocong Tang, Jiabao Li, Quan Yuan, Tian Wang, Weiwei Xiang, Jae Su Yu","doi":"10.1002/aenm.202404418","DOIUrl":null,"url":null,"abstract":"The modulation of heterointerfaces in 2D materials is critically important for improving the electrochemical performance of sodium-ion batteries (SIBs). In this context, the MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene heterostructure is taken as a typical example to reveal the fundamental principle of high sodium storage performance by regulating the terminal groups of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>. It is demonstrated that MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>(OH)<i><sub>x</sub></i> (M/-(OH)<i><sub>x</sub></i>) heterostructure with a high work function difference generates an enhanced built-in electric field, which facilitates charge transfer. Moreover, ether-based electrolytes, when compared to ester-based electrolytes, provide lower solvation-free energies and exhibit high compatibility with M/-(OH)<i><sub>x</sub></i>, resulting in superior rate capability. Notably, COMSOL simulations of sodium ion (Na<sup>+</sup>) concentration and Na<sup>+</sup> flux distributions reveal that the M/-(OH)<i><sub>x</sub></i> electrode has low concentration polarization and rapid diffusion kinetics in ether-based electrolytes. Consequently, the combination of M/-(OH)<i><sub>x</sub></i> heterostructure with the ether-based electrolyte provides 224.06 mAh g<sup>−1</sup> after 1000 cycles at 5.0 A g<sup>−1</sup>. Furthermore, the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C//M/-(OH)<i><sub>x</sub></i> full cell demonstrates robust electrochemical performance, delivering 116.49 mAh g<sup>−1</sup> after 140 cycles at 1.0 A g<sup>−1</sup>. These findings emphasize the impact of modulating terminal functional groups to optimize the electrochemical functionality of heterostructures and highlight the crucial role of electrode/electrolyte synergistic coupling in advancing the practical applications of SIBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"176 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404418","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation of heterointerfaces in 2D materials is critically important for improving the electrochemical performance of sodium-ion batteries (SIBs). In this context, the MoS2/Ti3C2Tx MXene heterostructure is taken as a typical example to reveal the fundamental principle of high sodium storage performance by regulating the terminal groups of Ti3C2Tx. It is demonstrated that MoS2/Ti3C2(OH)x (M/-(OH)x) heterostructure with a high work function difference generates an enhanced built-in electric field, which facilitates charge transfer. Moreover, ether-based electrolytes, when compared to ester-based electrolytes, provide lower solvation-free energies and exhibit high compatibility with M/-(OH)x, resulting in superior rate capability. Notably, COMSOL simulations of sodium ion (Na+) concentration and Na+ flux distributions reveal that the M/-(OH)x electrode has low concentration polarization and rapid diffusion kinetics in ether-based electrolytes. Consequently, the combination of M/-(OH)x heterostructure with the ether-based electrolyte provides 224.06 mAh g−1 after 1000 cycles at 5.0 A g−1. Furthermore, the Na3V2(PO4)3/C//M/-(OH)x full cell demonstrates robust electrochemical performance, delivering 116.49 mAh g−1 after 140 cycles at 1.0 A g−1. These findings emphasize the impact of modulating terminal functional groups to optimize the electrochemical functionality of heterostructures and highlight the crucial role of electrode/electrolyte synergistic coupling in advancing the practical applications of SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过异质工程和电解质改性实现稳健的钠存储
二维材料中异质界面的调节对于提高钠离子电池(SIB)的电化学性能至关重要。为此,我们以 MoS2/Ti3C2Tx MXene 异质结构为例,揭示了通过调节 Ti3C2Tx 的端基实现高钠储存性能的基本原理。研究表明,具有高功函数差的 MoS2/Ti3C2(OH)x (M/-(OH)x) 异质结构可产生增强的内置电场,从而促进电荷转移。此外,与酯基电解质相比,醚基电解质的无溶解能更低,与 M/-(OH)x 的相容性也更高,因此具有更出色的速率能力。值得注意的是,COMSOL 对钠离子 (Na+) 浓度和 Na+ 通量分布的模拟显示,M/-(OH)x 电极在醚基电解质中具有低浓度极化和快速扩散动力学特性。因此,M/-(OH)x 异质结构与醚基电解质相结合,在 5.0 A g-1 的条件下循环 1000 次后,可提供 224.06 mAh g-1。此外,Na3V2(PO4)3/C//M/-(OH)x 全电池表现出强劲的电化学性能,在 1.0 A g-1 条件下循环 140 次后可提供 116.49 mAh g-1。这些发现强调了调节末端官能团对优化异质结构电化学功能的影响,并突出了电极/电解质协同耦合在推进 SIB 实际应用中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Multihybridization for Enhancing Fe-Ni Bimetal Electrocatalyst in Water Oxidation Semi-Interpenetrating Network Electrolytes Utilizing Ester-Functionalized Low Tg Polysiloxanes in Lithium-Metal Batteries Comprehensive Passivation on Different Charged Ions and Defects for High Efficiency and Stable Perovskite Solar Cells The Electrochemical Acetone/Isopropanol Hydrogenation Cycle – An Alternative to Current Hydrogen Storage Solutions Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1