{"title":"Semi-Interpenetrating Network Electrolytes Utilizing Ester-Functionalized Low Tg Polysiloxanes in Lithium-Metal Batteries","authors":"Jannik Petry, Markus Dietel, Mukundan Thelakkat","doi":"10.1002/aenm.202403531","DOIUrl":null,"url":null,"abstract":"Solid polymer electrolytes (SPE) obtained from polyesters are viable alternatives to polyethylene oxide-based materials, especially for room-temperature applications. In SPEs, the ion conduction is dependent on the polymer segmental mobility and is thus facilitated by low glass transition temperature (<i>T</i><sub>g</sub>). Here, the study synthesizes an ester-funtionalized polysiloxane-based polymer electrolyte with an exceptionally low <i>T</i><sub>g</sub> of −76 °C, resulting in a high ionic conductivity of 2.6 × 10<sup>−5</sup> S cm<sup>−1</sup> at room temperature and a lithium transference number of 0.72. However, the low <i>T</i><sub>g</sub> and consequently low mechanical stability require reinforcement to promote the formation of stable lithium-electrolyte interfaces in lithium plating stripping experiments and stable battery cycling in lithium-metal batteries (LMBs). For this, the SPE is incorporated into a network structure to yield a semi-interpenetrating network electrolyte (SPE20-SIPN) which results in significantly improved storage modulus by three orders of magnitude and ionic conductivity is maintained upon crosslinking. The SPE20-SIPN exhibits stable cycling for up to 50 cycles with fluctuation (voltage noise) in some of the cells. A combination of crosslinking and nanoparticle addition (SPE20-N10-SIPN) overcomes the voltage noise and results in high coulombic efficiencies and high capacity retention above 80% for 200 cycles in solvent-free, all-solid-state LMBs at 30 °C.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"2 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid polymer electrolytes (SPE) obtained from polyesters are viable alternatives to polyethylene oxide-based materials, especially for room-temperature applications. In SPEs, the ion conduction is dependent on the polymer segmental mobility and is thus facilitated by low glass transition temperature (Tg). Here, the study synthesizes an ester-funtionalized polysiloxane-based polymer electrolyte with an exceptionally low Tg of −76 °C, resulting in a high ionic conductivity of 2.6 × 10−5 S cm−1 at room temperature and a lithium transference number of 0.72. However, the low Tg and consequently low mechanical stability require reinforcement to promote the formation of stable lithium-electrolyte interfaces in lithium plating stripping experiments and stable battery cycling in lithium-metal batteries (LMBs). For this, the SPE is incorporated into a network structure to yield a semi-interpenetrating network electrolyte (SPE20-SIPN) which results in significantly improved storage modulus by three orders of magnitude and ionic conductivity is maintained upon crosslinking. The SPE20-SIPN exhibits stable cycling for up to 50 cycles with fluctuation (voltage noise) in some of the cells. A combination of crosslinking and nanoparticle addition (SPE20-N10-SIPN) overcomes the voltage noise and results in high coulombic efficiencies and high capacity retention above 80% for 200 cycles in solvent-free, all-solid-state LMBs at 30 °C.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.