Wenxuan Wang, Shaoqing Zhang, Tao Zhang, Chaoyi Wang, Zhihao Chen, Shuohan Cheng, Yang Xiao, Jianqiu Wang, Yong Cui, Jianhui Hou
{"title":"Completely Fused Non‐Fullerene Acceptor Enables Efficient Postprocessing‐Free Organic Photovoltaics Cells","authors":"Wenxuan Wang, Shaoqing Zhang, Tao Zhang, Chaoyi Wang, Zhihao Chen, Shuohan Cheng, Yang Xiao, Jianqiu Wang, Yong Cui, Jianhui Hou","doi":"10.1002/aenm.202404482","DOIUrl":null,"url":null,"abstract":"The photovoltaic performance of organic photovoltaic (OPV) cells can be significantly improved by regulating the aggregation structure and film formation kinetics of the constituent materials. However, many regulation strategies, including the use of additives and annealing, require complex fabrication processes and additional investments, which poses challenges for the industrialization of OPV cells. In this work, a completely fused non‐fullerene acceptor, GS‐20 is designed and synthesized, with strong aggregation properties. The incorporation of GS‐20 as a third component into the PBQx‐TF:eC9‐2Cl‐based cell accelerates aggregation of eC9‐2Cl and improves molecular stacking by promoting film deposition. The as‐cast ternary OPV cells fabricated without any post‐treatments exhibited a high <jats:italic>V</jats:italic><jats:sub>OC</jats:sub> of 0.890 V and a maximum PCE of 19.0%. Moreover, a postprocessing‐free OPV module is fabricated using the blade coating method and obtains a satisfactory PCE of 13.5%, indicating excellent feasibility for large‐scale preparation. This work realizes an efficient postprocessing‐free OPV cell through molecular design and ternary strategy, facilitating the industrialization of OPV technology.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"95 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404482","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The photovoltaic performance of organic photovoltaic (OPV) cells can be significantly improved by regulating the aggregation structure and film formation kinetics of the constituent materials. However, many regulation strategies, including the use of additives and annealing, require complex fabrication processes and additional investments, which poses challenges for the industrialization of OPV cells. In this work, a completely fused non‐fullerene acceptor, GS‐20 is designed and synthesized, with strong aggregation properties. The incorporation of GS‐20 as a third component into the PBQx‐TF:eC9‐2Cl‐based cell accelerates aggregation of eC9‐2Cl and improves molecular stacking by promoting film deposition. The as‐cast ternary OPV cells fabricated without any post‐treatments exhibited a high VOC of 0.890 V and a maximum PCE of 19.0%. Moreover, a postprocessing‐free OPV module is fabricated using the blade coating method and obtains a satisfactory PCE of 13.5%, indicating excellent feasibility for large‐scale preparation. This work realizes an efficient postprocessing‐free OPV cell through molecular design and ternary strategy, facilitating the industrialization of OPV technology.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.