Randomness-Restricted Diffusion Model for Ocular Surface Structure Segmentation

Xinyu Guo;Han Wen;Huaying Hao;Yifan Zhao;Yanda Meng;Jiang Liu;Yalin Zheng;Wei Chen;Yitian Zhao
{"title":"Randomness-Restricted Diffusion Model for Ocular Surface Structure Segmentation","authors":"Xinyu Guo;Han Wen;Huaying Hao;Yifan Zhao;Yanda Meng;Jiang Liu;Yalin Zheng;Wei Chen;Yitian Zhao","doi":"10.1109/TMI.2024.3494762","DOIUrl":null,"url":null,"abstract":"Ocular surface diseases affect a significant portion of the population worldwide. Accurate segmentation and quantification of different ocular surface structures are crucial for the understanding of these diseases and clinical decision-making. However, the automated segmentation of the ocular surface structure is relatively unexplored and faces several challenges. Ocular surface structure boundaries are often inconspicuous and obscured by glare from reflections. In addition, the segmentation of different ocular structures always requires training of multiple individual models. Thus, developing a one-model-fits-all segmentation approach is desirable. In this paper, we introduce a randomness-restricted diffusion model for multiple ocular surface structure segmentation. First, a time-controlled fusion-attention module (TFM) is proposed to dynamically adjust the information flow within the diffusion model, based on the temporal relationships between the network’s input and time. TFM enables the network to effectively utilize image features to constrain the randomness of the generation process. We further propose a low-frequency consistency filter and a new loss to alleviate model uncertainty and error accumulation caused by the multi-step denoising process. Extensive experiments have shown that our approach can segment seven different ocular surface structures. Our method performs better than both dedicated ocular surface segmentation methods and general medical image segmentation methods. We further validated the proposed method over two clinical datasets, and the results demonstrated that it is beneficial to clinical applications, such as the meibomian gland dysfunction grading and aqueous deficient dry eye diagnosis.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1359-1372"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750059/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ocular surface diseases affect a significant portion of the population worldwide. Accurate segmentation and quantification of different ocular surface structures are crucial for the understanding of these diseases and clinical decision-making. However, the automated segmentation of the ocular surface structure is relatively unexplored and faces several challenges. Ocular surface structure boundaries are often inconspicuous and obscured by glare from reflections. In addition, the segmentation of different ocular structures always requires training of multiple individual models. Thus, developing a one-model-fits-all segmentation approach is desirable. In this paper, we introduce a randomness-restricted diffusion model for multiple ocular surface structure segmentation. First, a time-controlled fusion-attention module (TFM) is proposed to dynamically adjust the information flow within the diffusion model, based on the temporal relationships between the network’s input and time. TFM enables the network to effectively utilize image features to constrain the randomness of the generation process. We further propose a low-frequency consistency filter and a new loss to alleviate model uncertainty and error accumulation caused by the multi-step denoising process. Extensive experiments have shown that our approach can segment seven different ocular surface structures. Our method performs better than both dedicated ocular surface segmentation methods and general medical image segmentation methods. We further validated the proposed method over two clinical datasets, and the results demonstrated that it is beneficial to clinical applications, such as the meibomian gland dysfunction grading and aqueous deficient dry eye diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于眼表结构分段的随机性受限扩散模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI. Table of Contents Blood Oxygenation Quantification in Multispectral Photoacoustic Tomography Using A Convex Cone Approach. DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis. Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1