Yi Hyeon Ha, Jeong Il Lee, Jong-Min Kim, Byung-Seung Yim
{"title":"Investigation of bonding properties of solderable anisotropic polymer composite filled with low- and high-melting-point alloy fillers","authors":"Yi Hyeon Ha, Jeong Il Lee, Jong-Min Kim, Byung-Seung Yim","doi":"10.1007/s10854-024-13797-6","DOIUrl":null,"url":null,"abstract":"<div><p>The bonding properties of solderable anisotropic polymer composites (SAPCs) containing only low-melting-point alloy (LMPA) fillers need improvement. In this study, a new composite containing LMPA and high-melting-point alloy (HMPA) fillers, named LH-SAPC, was proposed, and the establishment of the conduction path and bonding properties of LH-SAPC were investigated for different LMPA/HMPA mixing proportions. Six types of LH-SAPC filled with different LMPA/HMPA mixing proportions (100:0, 80:20, 50:50, 20:80, 10:90, and 0:100) were formulated, and bonding tests were performed using the quad flat package. The LH-SAPCs containing less than 50 vol% HMPA within the LMPA/HMPA filler formed a proper and broad conduction path through of the excellent inner flowage of molten fillers within the polymer composite maintaining a low-viscosity condition, coalescence behavior between adjacent fillers, and a wetting behavior for the metallization. In addition, the mechanical bonding properties of the LH-SAPC joints improved with increasing HMPA content owing to the precipitation hardening and dispersion strengthening effects of the finely distributed Bi-rich phase and intermetallic compound particles within the conduction path and grain refinement. In contrast, as the HMPA content was excessive within the LH-SAPC, a poor conduction path was established because of the fluidity deterioration of the molten HMPA, which was attributed to the immoderate curing of the polymer composite; accordingly, the mechanical properties of the LH-SAPC joint degraded.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13797-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The bonding properties of solderable anisotropic polymer composites (SAPCs) containing only low-melting-point alloy (LMPA) fillers need improvement. In this study, a new composite containing LMPA and high-melting-point alloy (HMPA) fillers, named LH-SAPC, was proposed, and the establishment of the conduction path and bonding properties of LH-SAPC were investigated for different LMPA/HMPA mixing proportions. Six types of LH-SAPC filled with different LMPA/HMPA mixing proportions (100:0, 80:20, 50:50, 20:80, 10:90, and 0:100) were formulated, and bonding tests were performed using the quad flat package. The LH-SAPCs containing less than 50 vol% HMPA within the LMPA/HMPA filler formed a proper and broad conduction path through of the excellent inner flowage of molten fillers within the polymer composite maintaining a low-viscosity condition, coalescence behavior between adjacent fillers, and a wetting behavior for the metallization. In addition, the mechanical bonding properties of the LH-SAPC joints improved with increasing HMPA content owing to the precipitation hardening and dispersion strengthening effects of the finely distributed Bi-rich phase and intermetallic compound particles within the conduction path and grain refinement. In contrast, as the HMPA content was excessive within the LH-SAPC, a poor conduction path was established because of the fluidity deterioration of the molten HMPA, which was attributed to the immoderate curing of the polymer composite; accordingly, the mechanical properties of the LH-SAPC joint degraded.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.