Biomechanical properties of various rat rotator cuff repair techniques

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2024-11-02 DOI:10.1016/j.jbiomech.2024.112399
Mohamed Abozaid, Elameen Adam, Aida Sarcon, Kai-Nan An, Chunfeng Zhao
{"title":"Biomechanical properties of various rat rotator cuff repair techniques","authors":"Mohamed Abozaid,&nbsp;Elameen Adam,&nbsp;Aida Sarcon,&nbsp;Kai-Nan An,&nbsp;Chunfeng Zhao","doi":"10.1016/j.jbiomech.2024.112399","DOIUrl":null,"url":null,"abstract":"<div><div>While rat models are frequently used to study tendon healing, there is a lack of research comparing various rotator cuff repair methods in this animal model. Determining the most effective method to begin with is pivotal for biological studies focused on healing augmentation. No study to date has shown the superiority of one repair over the other for rotator cuff repair in a rat model. We performed a biomechanic study using a rat model to study the strength of four common grasping techniques. We assessed if the bone tunnel trajectory influenced the early biomechanics of the repair at postoperative day 0 (POD0). Sixty cadaveric rat shoulders were divided equally into 6 groups; 4 groups were allocated for the biomechanical strength testing based on either a (1) modified Mason Allen (MM), (2) modified Kessler loop (MK), (3) horizontal mattress (HM), or a (4) simple interrupted stitch (SS) technique. The remaining 2 groups were used to evaluate two tunneling angles: a transverse tunnel (TT) that was perpendicular to the long humeral axis, or a longitudinal tunnel (LT) that was 30<sup>◦</sup> angle to the humerus. MM had the highest mean failure load, followed by MK, HM, and SS. Pairwise comparison revealed that MM was stronger than SS and HM (P = 0.025 and P = 0.026, respectively), although similar to the MK (P = 0.881). MM was stiffer than MK (P &lt; 0.001), HM (P = 0.008), and SS (P &lt; 0.001). The TT and LT had similar loads to failure and stiffness. Our study suggests that the MM technique provides a stronger and stiffer rotator cuff repair than the others.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"177 ","pages":"Article 112399"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004779","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

While rat models are frequently used to study tendon healing, there is a lack of research comparing various rotator cuff repair methods in this animal model. Determining the most effective method to begin with is pivotal for biological studies focused on healing augmentation. No study to date has shown the superiority of one repair over the other for rotator cuff repair in a rat model. We performed a biomechanic study using a rat model to study the strength of four common grasping techniques. We assessed if the bone tunnel trajectory influenced the early biomechanics of the repair at postoperative day 0 (POD0). Sixty cadaveric rat shoulders were divided equally into 6 groups; 4 groups were allocated for the biomechanical strength testing based on either a (1) modified Mason Allen (MM), (2) modified Kessler loop (MK), (3) horizontal mattress (HM), or a (4) simple interrupted stitch (SS) technique. The remaining 2 groups were used to evaluate two tunneling angles: a transverse tunnel (TT) that was perpendicular to the long humeral axis, or a longitudinal tunnel (LT) that was 30 angle to the humerus. MM had the highest mean failure load, followed by MK, HM, and SS. Pairwise comparison revealed that MM was stronger than SS and HM (P = 0.025 and P = 0.026, respectively), although similar to the MK (P = 0.881). MM was stiffer than MK (P < 0.001), HM (P = 0.008), and SS (P < 0.001). The TT and LT had similar loads to failure and stiffness. Our study suggests that the MM technique provides a stronger and stiffer rotator cuff repair than the others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各种大鼠肩袖修复技术的生物力学特性。
虽然大鼠模型经常被用来研究肌腱愈合,但目前还缺乏在这种动物模型中比较各种肩袖修复方法的研究。确定最有效的方法对于以增强愈合为重点的生物学研究至关重要。迄今为止,还没有任何研究表明,在大鼠模型中进行肩袖修复时,一种修复方法优于另一种修复方法。我们利用大鼠模型进行了一项生物力学研究,研究了四种常见抓握技术的强度。我们评估了骨隧道轨迹是否会影响术后第 0 天(POD0)修复的早期生物力学。我们将 60 只尸体大鼠肩部平均分成 6 组,其中 4 组根据 (1) 改良梅森艾伦 (MM)、(2) 改良凯斯勒环 (MK)、(3) 水平床垫 (HM) 或 (4) 简单间断缝合 (SS) 技术进行生物力学强度测试。其余两组用于评估两种隧道角度:与肱骨长轴垂直的横向隧道(TT)或与肱骨成 30◦ 角的纵向隧道(LT)。MM的平均破坏载荷最高,其次是MK、HM和SS。配对比较显示,MM 的强度高于 SS 和 HM(分别为 P = 0.025 和 P = 0.026),但与 MK 相似(P = 0.881)。MM 比 MK 更硬(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Lumbopelvic rhythm analysis by quartiles: Identification of differences in lumbar and pelvic contribution during trunk flexion and extension in subjects with low back pain of different origin. A case-control study Effects of knee joint position on the triceps Suræ torque-size relationship during plantarflexion in healthy young adults Differential T2* changes in tibialis anterior and soleus: Influence of exercise type and perceived exertion Shear viscoelastic properties of human orbital fat Société de Biomécanique young investigator award 2023: Estimation of intersegmental load at L5-S1 during lifting/lowering tasks using force plate free markerless motion capture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1