Molecular Dynamic Simulation of Primary Damage with Electronic Stopping in Indium Phosphide.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-30 DOI:10.3390/nano14211738
Yurong Bai, Wenlong Liao, Zhongcun Chen, Wei Li, Wenbo Liu, Huan He, Chaohui He
{"title":"Molecular Dynamic Simulation of Primary Damage with Electronic Stopping in Indium Phosphide.","authors":"Yurong Bai, Wenlong Liao, Zhongcun Chen, Wei Li, Wenbo Liu, Huan He, Chaohui He","doi":"10.3390/nano14211738","DOIUrl":null,"url":null,"abstract":"<p><p>Indium phosphide (InP) is an excellent material used in space electronic devices due to its direct band gap, high electron mobility, and high radiation resistance. Displacement damage in InP, such as vacancies, interstitials, and clusters, induced by cosmic particles can lead to the serious degradation of InP devices. In this work, the analytical bond order potential of InP is modified with the short-range repulsive potential, and the hybrid potential is verified for its reliability to simulate the atomic cascade collisions. By using molecular dynamics simulations with the modified potential, the primary damage defects evolution of InP caused by 1-10 keV primary knock-on atoms (PKAs) are studied. The effects of electronic energy loss are also considered in our research. The results show that the addition of electronic stopping loss reduces the number of point defects and weakens the damage regions. The reduction rates of point defects caused by electronic energy loss at the stable state are 32.2% and 27.4% for 10 keV In-PKA and P-PKA, respectively. In addition, the effects of electronic energy loss can lead to an extreme decline in the number of medium clusters, cause large clusters to vanish, and make the small clusters dominant damage products in InP. These findings are helpful to explain the radiation-induced damage mechanism of InP and expand the application of InP devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211738","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Indium phosphide (InP) is an excellent material used in space electronic devices due to its direct band gap, high electron mobility, and high radiation resistance. Displacement damage in InP, such as vacancies, interstitials, and clusters, induced by cosmic particles can lead to the serious degradation of InP devices. In this work, the analytical bond order potential of InP is modified with the short-range repulsive potential, and the hybrid potential is verified for its reliability to simulate the atomic cascade collisions. By using molecular dynamics simulations with the modified potential, the primary damage defects evolution of InP caused by 1-10 keV primary knock-on atoms (PKAs) are studied. The effects of electronic energy loss are also considered in our research. The results show that the addition of electronic stopping loss reduces the number of point defects and weakens the damage regions. The reduction rates of point defects caused by electronic energy loss at the stable state are 32.2% and 27.4% for 10 keV In-PKA and P-PKA, respectively. In addition, the effects of electronic energy loss can lead to an extreme decline in the number of medium clusters, cause large clusters to vanish, and make the small clusters dominant damage products in InP. These findings are helpful to explain the radiation-induced damage mechanism of InP and expand the application of InP devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子动力学模拟磷化铟中的电子停止初级损伤。
磷化铟(InP)具有直接带隙、高电子迁移率和高抗辐射性,是一种用于空间电子器件的优良材料。宇宙粒子在 InP 中诱发的空位、间隙和团簇等位移损伤会导致 InP 器件的严重降解。在这项工作中,用短程斥力势修改了 InP 的分析键阶势,并验证了混合势模拟原子级联碰撞的可靠性。利用分子动力学模拟修改后的势,研究了 1-10 keV 原初击穿原子(PKAs)引起的 InP 初级损伤缺陷演化。我们的研究还考虑了电子能量损失的影响。研究结果表明,电子止损的加入减少了点缺陷的数量,并削弱了损伤区域。对于 10 keV In-PKA 和 P-PKA,稳定状态下电子能量损耗导致的点缺陷减少率分别为 32.2% 和 27.4%。此外,电子能量损失的影响会导致中等簇的数量极度下降,导致大簇消失,并使小簇成为 InP 中的主要损伤产物。这些发现有助于解释辐照诱导的 InP 损伤机理,拓展 InP 器件的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Deriving High-Energy-Density Polymeric Nitrogen N10 from the Host-Guest ArN10 Compound. Shannon Entropy in Uncertainty Quantification for the Physical Effective Parameter Computations of Some Nanofluids. Enhanced On-State Current and Stability in Heterojunction ITO/ZnO Transistors: A Mechanistic Analysis. Enhanced Persistent Luminescence from Cr3+-Doped ZnGa2O4 Nanoparticles upon Immersion in Simulated Physiological Media. Protective Effect of Carbon Dots Derived from Salvia miltiorrhiza Pretreatment in Acute Myocardial Infarction in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1