{"title":"Molecular Dynamic Simulation of Primary Damage with Electronic Stopping in Indium Phosphide.","authors":"Yurong Bai, Wenlong Liao, Zhongcun Chen, Wei Li, Wenbo Liu, Huan He, Chaohui He","doi":"10.3390/nano14211738","DOIUrl":null,"url":null,"abstract":"<p><p>Indium phosphide (InP) is an excellent material used in space electronic devices due to its direct band gap, high electron mobility, and high radiation resistance. Displacement damage in InP, such as vacancies, interstitials, and clusters, induced by cosmic particles can lead to the serious degradation of InP devices. In this work, the analytical bond order potential of InP is modified with the short-range repulsive potential, and the hybrid potential is verified for its reliability to simulate the atomic cascade collisions. By using molecular dynamics simulations with the modified potential, the primary damage defects evolution of InP caused by 1-10 keV primary knock-on atoms (PKAs) are studied. The effects of electronic energy loss are also considered in our research. The results show that the addition of electronic stopping loss reduces the number of point defects and weakens the damage regions. The reduction rates of point defects caused by electronic energy loss at the stable state are 32.2% and 27.4% for 10 keV In-PKA and P-PKA, respectively. In addition, the effects of electronic energy loss can lead to an extreme decline in the number of medium clusters, cause large clusters to vanish, and make the small clusters dominant damage products in InP. These findings are helpful to explain the radiation-induced damage mechanism of InP and expand the application of InP devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211738","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Indium phosphide (InP) is an excellent material used in space electronic devices due to its direct band gap, high electron mobility, and high radiation resistance. Displacement damage in InP, such as vacancies, interstitials, and clusters, induced by cosmic particles can lead to the serious degradation of InP devices. In this work, the analytical bond order potential of InP is modified with the short-range repulsive potential, and the hybrid potential is verified for its reliability to simulate the atomic cascade collisions. By using molecular dynamics simulations with the modified potential, the primary damage defects evolution of InP caused by 1-10 keV primary knock-on atoms (PKAs) are studied. The effects of electronic energy loss are also considered in our research. The results show that the addition of electronic stopping loss reduces the number of point defects and weakens the damage regions. The reduction rates of point defects caused by electronic energy loss at the stable state are 32.2% and 27.4% for 10 keV In-PKA and P-PKA, respectively. In addition, the effects of electronic energy loss can lead to an extreme decline in the number of medium clusters, cause large clusters to vanish, and make the small clusters dominant damage products in InP. These findings are helpful to explain the radiation-induced damage mechanism of InP and expand the application of InP devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.