Enhanced Persistent Luminescence from Cr3+-Doped ZnGa2O4 Nanoparticles upon Immersion in Simulated Physiological Media.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-02-06 DOI:10.3390/nano15030247
Clement Lee, David Park, Wai-Tung Shiu, Yihong Liu, Lijia Liu
{"title":"Enhanced Persistent Luminescence from Cr<sup>3+</sup>-Doped ZnGa<sub>2</sub>O<sub>4</sub> Nanoparticles upon Immersion in Simulated Physiological Media.","authors":"Clement Lee, David Park, Wai-Tung Shiu, Yihong Liu, Lijia Liu","doi":"10.3390/nano15030247","DOIUrl":null,"url":null,"abstract":"<p><p>Near-infrared persistent luminescence (PersL) nanoparticles (NPs) have great potential in biomedical applications due to their ability to continuously emit tissue-penetrating light. Despite numerous reports on the distribution, biological safety and other consequences of PersL NPs in vitro and in vivo, there has been a lack of studies on the optical properties of these NPs in the physiological environment. In light of this, we investigated the effects of short-term immersion of the prominent Cr<sup>3+</sup>-doped ZnGa<sub>2</sub>O<sub>4</sub> (CZGO) NPs in a simulated physiological environment for up to 48 h. This paper reports the changes in the structural and optical properties of CZGO NPs after their immersion in a phosphate-buffered saline (PBS) solution for pre-determined time intervals. Interestingly, the luminescence intensity and lifetime noticeably improved upon exposure to the PBS media, which is unusual among existing nanomaterials explored as bioimaging probes. After 48 h of immersion in the PBS solution, the CZGO NPs were approximately twice as bright as the non-immersed sample. X-ray spectroscopic techniques revealed the formation of ZnO, which results in an improvement in observed luminescence.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030247","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared persistent luminescence (PersL) nanoparticles (NPs) have great potential in biomedical applications due to their ability to continuously emit tissue-penetrating light. Despite numerous reports on the distribution, biological safety and other consequences of PersL NPs in vitro and in vivo, there has been a lack of studies on the optical properties of these NPs in the physiological environment. In light of this, we investigated the effects of short-term immersion of the prominent Cr3+-doped ZnGa2O4 (CZGO) NPs in a simulated physiological environment for up to 48 h. This paper reports the changes in the structural and optical properties of CZGO NPs after their immersion in a phosphate-buffered saline (PBS) solution for pre-determined time intervals. Interestingly, the luminescence intensity and lifetime noticeably improved upon exposure to the PBS media, which is unusual among existing nanomaterials explored as bioimaging probes. After 48 h of immersion in the PBS solution, the CZGO NPs were approximately twice as bright as the non-immersed sample. X-ray spectroscopic techniques revealed the formation of ZnO, which results in an improvement in observed luminescence.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cr3+掺杂ZnGa2O4纳米颗粒浸泡在模拟生理介质中增强持续发光
近红外持续发光纳米粒子(NPs)具有连续发射组织穿透光的能力,在生物医学领域具有巨大的应用潜力。尽管有许多关于PersL NPs在体外和体内的分布、生物安全性和其他后果的报道,但对这些NPs在生理环境中的光学特性的研究还很缺乏。鉴于此,我们研究了在模拟生理环境中短期浸泡Cr3+掺杂ZnGa2O4 (CZGO) NPs长达48小时的影响。本文报道了CZGO NPs在磷酸盐缓冲盐水(PBS)溶液中浸泡预定时间间隔后结构和光学性质的变化。有趣的是,暴露于PBS介质后,发光强度和寿命显着提高,这在现有的纳米材料中是不寻常的,作为生物成像探针。在PBS溶液中浸泡48小时后,CZGO NPs的亮度大约是未浸泡样品的两倍。x射线光谱技术揭示了ZnO的形成,这导致了观察到的发光的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
RETRACTED: Davarpanah, A. Parametric Study of Polymer-Nanoparticles-Assisted Injectivity Performance for Axisymmetric Two-Phase Flow in EOR Processes. Nanomaterials 2020, 10, 1818. Highly Efficient Conductivity Modulation via Stacked Multi-Gate Graphene Ambipolar Transistors. Insights into Growing Silica Around Monocrystalline Magnetite Nanorods Leading to Colloids with Improved Magnetic Properties-Obstacles and Solutions. MgO-Loaded Magnetic Crab Shell-Derived Biochar for Efficient Synergistic Adsorption of Heavy Metals and Dye: Characterization, Adsorption Performance and Mechanistic Study. Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1