Decarboxylative click cycloaddition: an emerging strategy towards substituted 1,2,3-triazole derivatives.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-11-10 DOI:10.1007/s11030-024-11014-4
Manpreet Kaur, Divya Bharti, Vinod Kumar, Praveen Kumar Verma, Rakesh Kumar
{"title":"Decarboxylative click cycloaddition: an emerging strategy towards substituted 1,2,3-triazole derivatives.","authors":"Manpreet Kaur, Divya Bharti, Vinod Kumar, Praveen Kumar Verma, Rakesh Kumar","doi":"10.1007/s11030-024-11014-4","DOIUrl":null,"url":null,"abstract":"<p><p>1,2,3-triazole is a vital structural motif of various drugs and therapeutic leads, as well as a linker for bioconjugation and molecular recognition. Cu-catalysed click cycloaddition of azides with terminal alkynes (CuAAc) is an important reaction to construct the triazole core. In recent years, various decarboxylative click strategies utilizing alkynoic acids as stable surrogates for low boiling or gaseous alkynes have been developed. For instance, propiolic acid, which is easy to transport, is a safe alternative for flammable gaseous acetylene. In this review article, we have covered the recent development in the decarboxylative click cycloaddition of alkynoic acids with azides leading to the synthesis of diversely substituted triazoles, including monosubstituted, 1,4-disubstituted and fully substituted 1,2,3-triazoles. Various aspects such as mechanistic insights and optimization conditions/role of catalyst are highlighted.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11014-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

1,2,3-triazole is a vital structural motif of various drugs and therapeutic leads, as well as a linker for bioconjugation and molecular recognition. Cu-catalysed click cycloaddition of azides with terminal alkynes (CuAAc) is an important reaction to construct the triazole core. In recent years, various decarboxylative click strategies utilizing alkynoic acids as stable surrogates for low boiling or gaseous alkynes have been developed. For instance, propiolic acid, which is easy to transport, is a safe alternative for flammable gaseous acetylene. In this review article, we have covered the recent development in the decarboxylative click cycloaddition of alkynoic acids with azides leading to the synthesis of diversely substituted triazoles, including monosubstituted, 1,4-disubstituted and fully substituted 1,2,3-triazoles. Various aspects such as mechanistic insights and optimization conditions/role of catalyst are highlighted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脱羧点击环化反应:实现取代的 1,2,3-三唑衍生物的新兴战略。
1,2,3-三唑是各种药物和治疗药物的重要结构基团,也是生物共轭和分子识别的连接体。铜催化叠氮化物与末端炔烃的单击环加成反应(CuAAc)是构建三唑核心的重要反应。近年来,利用炔酸作为低沸点或气态炔的稳定替代物,开发出了各种脱羧点击策略。例如,易于运输的丙炔酸是易燃气态乙炔的安全替代品。在这篇综述文章中,我们介绍了炔酸与叠氮化物进行脱羧点击环化反应,从而合成多种取代的三唑(包括单取代、1,4-二取代和全取代的 1,2,3-三唑)的最新进展。重点介绍了机理认识和优化条件/催化剂作用等各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Integrated computational approaches for identification of potent pyrazole-based glycogen synthase kinase-3β (GSK-3β) inhibitors: 3D-QSAR, virtual screening, docking, MM/GBSA, EC, MD simulation studies. Transcriptome and interactome-based analyses to unravel crucial proteins and pathways involved in Acinetobacter baumannii pathogenesis. Fe3O4@SiO2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst for preparation of new dimethyldihydropyrimido[4,5-b]quinolone derivatives. Identification of potential antigenic proteins and epitopes for the development of a monkeypox virus vaccine: an in silico approach. In silico studies on nicotinamide analogs as competitive inhibitors of nicotinamidase in methicillin-resistant Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1