Monika Mielniczuk, Amy Knorpp, Rishabh Shukla, Rolf Erni, Dariusz Kata, Thomas Graule, Ewa Drożdż, Michael Stuer
{"title":"Solvothermal Synthesis of Medium-Entropy Oxide Spheres for Thermocatalytic Conversion of CO2 to Methanol.","authors":"Monika Mielniczuk, Amy Knorpp, Rishabh Shukla, Rolf Erni, Dariusz Kata, Thomas Graule, Ewa Drożdż, Michael Stuer","doi":"10.1002/cplu.202400691","DOIUrl":null,"url":null,"abstract":"<p><p>New chemical compositions and structures for medium- and high-entropy oxides (HEOs) currently represent a promising new avenue in materials research for a wide range of applications including catalysis, energy storage, and ceramics. To speed up further development, synthesis methods for multicationic oxides are needed for controlling features like morphology, porosity, and chemical compositions. In this work, mesoporous spinel oxide spheres with five cations are synthesized using solvothermal synthesis techniques. The targeted chemistry included Co, Al, Fe, and Cr as the first four cations, where the fifth cation was varied by increasing cation radii (Ga, In, Yb, Ho, or Ce). After calcination, all as-synthesized precursors led to mesoporous oxide spheres with spinel oxide structures. In order to demonstrate an example of applicability for targeting different M3+ cations, the sample containing Co, Al, Fe, Cr, and In was tested in a model reaction of thermocatalytic CO2 hydrogenation and is shown to be active with a preference to methanol formation (58% selectivity, 7.8% conversion at 300 °C). The synthesis of multicationic mesoporous spheres appears to be quite flexible in terms of possible M3+ cations compositions and is a potential material to combine targeted chemistry for applications like catalysis.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400691"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400691","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
New chemical compositions and structures for medium- and high-entropy oxides (HEOs) currently represent a promising new avenue in materials research for a wide range of applications including catalysis, energy storage, and ceramics. To speed up further development, synthesis methods for multicationic oxides are needed for controlling features like morphology, porosity, and chemical compositions. In this work, mesoporous spinel oxide spheres with five cations are synthesized using solvothermal synthesis techniques. The targeted chemistry included Co, Al, Fe, and Cr as the first four cations, where the fifth cation was varied by increasing cation radii (Ga, In, Yb, Ho, or Ce). After calcination, all as-synthesized precursors led to mesoporous oxide spheres with spinel oxide structures. In order to demonstrate an example of applicability for targeting different M3+ cations, the sample containing Co, Al, Fe, Cr, and In was tested in a model reaction of thermocatalytic CO2 hydrogenation and is shown to be active with a preference to methanol formation (58% selectivity, 7.8% conversion at 300 °C). The synthesis of multicationic mesoporous spheres appears to be quite flexible in terms of possible M3+ cations compositions and is a potential material to combine targeted chemistry for applications like catalysis.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.