{"title":"Travel Times of a Descending Melting Probe on Europa.","authors":"Augusto Carballido","doi":"10.1089/ast.2024.0026","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>3</mn><mo> </mo></mrow></math>mm) produced shorter travel times (between 22 days for a probe temperature <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>600</mn><mi>K</mi></mrow></math> and ∼4 years for <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>280</mn><mi>K</mi></mrow></math>) than a larger cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>1</mn><mo> </mo></mrow></math>m), which produced travel times between 27 years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 600K) and ∼10<sup>3</sup> years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 11","pages":"1143-1149"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (mm) produced shorter travel times (between 22 days for a probe temperature and ∼4 years for ) than a larger cell size (m), which produced travel times between 27 years ( 600K) and ∼103 years ( 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming