Understanding Sulfate Stability on Mars: A Thermo-Raman Spectroscopy Study.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2025-02-19 DOI:10.1089/ast.2024.0078
Jennifer Huidobro, Julene Aramendia, Cristina García-Florentino, Leire Coloma, Iratxe Población, Gorka Arana, Juan Manuel Madariaga
{"title":"Understanding Sulfate Stability on Mars: A Thermo-Raman Spectroscopy Study.","authors":"Jennifer Huidobro, Julene Aramendia, Cristina García-Florentino, Leire Coloma, Iratxe Población, Gorka Arana, Juan Manuel Madariaga","doi":"10.1089/ast.2024.0078","DOIUrl":null,"url":null,"abstract":"<p><p>This work examines the impact of high temperatures from celestial shock events on the stability of sulfates found on Mars (gypsum) and those expected to be present (syngenite and görgeyite). Raman spectroscopy, a cutting-edge technique in space exploration, was used to track their stability. Specifically, a Renishaw inVia<sup>™</sup> micro-Raman confocal spectrometer was coupled with an external Linkam THMS600/HF600 temperature-controlled stage to monitor the sample temperature while measuring the main Raman band positions of the sulfates and those of water molecules in these salts across temperatures ranging from 313 to 673 K. Results showed a shift toward lower wavenumbers with increasing temperature for all compounds, up to each compound's inflection temperature, where phase transformations occurred. The linear trends identified in this study provide valuable insights for interpreting data from space missions equipped with Raman instruments and understanding Earth-based measurements. These trends enable the estimation of Raman band wavenumbers at specific temperatures, as well as the determination of the temperature at which a given spectrum was acquired. Additionally, the research demonstrated that the three heated salts fully rehydrated after at least 1 month under standard environmental conditions (23°C, 1 atm, and ∼80% relative humidity). This finding on reversibility is crucial for interpreting time-dependent results, such as characterizing meteorites that contain evaporite salts.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0078","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the impact of high temperatures from celestial shock events on the stability of sulfates found on Mars (gypsum) and those expected to be present (syngenite and görgeyite). Raman spectroscopy, a cutting-edge technique in space exploration, was used to track their stability. Specifically, a Renishaw inVia micro-Raman confocal spectrometer was coupled with an external Linkam THMS600/HF600 temperature-controlled stage to monitor the sample temperature while measuring the main Raman band positions of the sulfates and those of water molecules in these salts across temperatures ranging from 313 to 673 K. Results showed a shift toward lower wavenumbers with increasing temperature for all compounds, up to each compound's inflection temperature, where phase transformations occurred. The linear trends identified in this study provide valuable insights for interpreting data from space missions equipped with Raman instruments and understanding Earth-based measurements. These trends enable the estimation of Raman band wavenumbers at specific temperatures, as well as the determination of the temperature at which a given spectrum was acquired. Additionally, the research demonstrated that the three heated salts fully rehydrated after at least 1 month under standard environmental conditions (23°C, 1 atm, and ∼80% relative humidity). This finding on reversibility is crucial for interpreting time-dependent results, such as characterizing meteorites that contain evaporite salts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Understanding Sulfate Stability on Mars: A Thermo-Raman Spectroscopy Study. Ammonia or Methanol Would Enable Subsurface Liquid Water at the Martian South Pole. Proteomic Insights into Psychrophile Growth in Perchlorate-Amended Subzero Conditions: Implications for Martian Life Detection. Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station. Correction to: Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes (Doi: 10.1089/Ast.2024.0096).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1