Anais S Gentilhomme, Kusum Dhakar, Emma Timmins-Schiffman, Matthew Chaw, Erin Firth, Karen Junge, Brook L Nunn
{"title":"Proteomic Insights into Psychrophile Growth in Perchlorate-Amended Subzero Conditions: Implications for Martian Life Detection.","authors":"Anais S Gentilhomme, Kusum Dhakar, Emma Timmins-Schiffman, Matthew Chaw, Erin Firth, Karen Junge, Brook L Nunn","doi":"10.1089/ast.2024.0065","DOIUrl":null,"url":null,"abstract":"<p><p>Since the discovery of perchlorates in martian soils, astrobiologists have been curious if and how life could survive in these low-water, high-salt environments. Perchlorates induce chaotropic and oxidative stress but can also confer increased cold tolerance in some extremophiles. Though bacterial survival has been demonstrated at subzero temperatures and in perchlorate solution, proteomic analysis of cells growing in an environment like martian regolith brines-perchlorate with subzero temperatures-has yet to be demonstrated. By defining biosignatures of survival and growth in perchlorate-amended media at subzero conditions, we move closer to understanding the mechanisms that underlie the feasibility of life on Mars. <i>Colwellia psychrerythraea</i> str. 34H (Cp34H), a marine psychrophile, was exposed to perchlorate ions in the form of a diluted Phoenix Mars Lander Wet Chemistry Laboratory solution at -1°C and -5°C. At both temperatures in perchlorate-amended media, Cp34H grew at reduced rates. Mass spectrometry-based proteomics analyses revealed that proteins responsible for mitigating effects of oxidative and chaotropic stress increased, while cellular transport proteins decreased. Cumulative protein signatures suggested modifications to cell-cell or cell-surface adhesion properties. These physical and biochemical traits could serve as putative identifiable biosignatures for life detection in martian environments.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0065","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Since the discovery of perchlorates in martian soils, astrobiologists have been curious if and how life could survive in these low-water, high-salt environments. Perchlorates induce chaotropic and oxidative stress but can also confer increased cold tolerance in some extremophiles. Though bacterial survival has been demonstrated at subzero temperatures and in perchlorate solution, proteomic analysis of cells growing in an environment like martian regolith brines-perchlorate with subzero temperatures-has yet to be demonstrated. By defining biosignatures of survival and growth in perchlorate-amended media at subzero conditions, we move closer to understanding the mechanisms that underlie the feasibility of life on Mars. Colwellia psychrerythraea str. 34H (Cp34H), a marine psychrophile, was exposed to perchlorate ions in the form of a diluted Phoenix Mars Lander Wet Chemistry Laboratory solution at -1°C and -5°C. At both temperatures in perchlorate-amended media, Cp34H grew at reduced rates. Mass spectrometry-based proteomics analyses revealed that proteins responsible for mitigating effects of oxidative and chaotropic stress increased, while cellular transport proteins decreased. Cumulative protein signatures suggested modifications to cell-cell or cell-surface adhesion properties. These physical and biochemical traits could serve as putative identifiable biosignatures for life detection in martian environments.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming