Chemotaxis gene of a bacterium impacts larval settlement and metamorphosis in the marine mussel Mytilus coruscus via c-di-GMP controlling extracellular protein production.
{"title":"Chemotaxis gene of a bacterium impacts larval settlement and metamorphosis in the marine mussel <i>Mytilus coruscus</i> via c-di-GMP controlling extracellular protein production.","authors":"Yu Tao, Jiayi Mu, Lihua Peng, Jin-Long Yang, Xiao Liang","doi":"10.1080/08927014.2024.2423806","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene <i>cheW</i> resulted in reduced motility of <i>Pseudoalteromonas marina</i>, accompanied by an increase in c-di-GMP content. The Δ<i>cheW</i> strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the Δ<i>cheW</i> strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of Δ<i>cheW</i> was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene <i>cheW</i> inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2423806","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene cheW resulted in reduced motility of Pseudoalteromonas marina, accompanied by an increase in c-di-GMP content. The ΔcheW strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the ΔcheW strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of ΔcheW was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene cheW inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.