3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-11-11 DOI:10.1177/08853282241300587
Jingzhi Li, Yuelin Chen, Mengru Wei, Ying Tang, Li Zhou, Xiaoxuan Quan, Ruina Ma, Nan Hou
{"title":"3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate.","authors":"Jingzhi Li, Yuelin Chen, Mengru Wei, Ying Tang, Li Zhou, Xiaoxuan Quan, Ruina Ma, Nan Hou","doi":"10.1177/08853282241300587","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the absence of blood vessels, cartilage exhibits extremely limited self-repair capacity. Currently, repairing laryngeal cartilage defects, resulting from conditions such as laryngeal tumors, injury, and congenital structural abnormalities, remains a significant challenge in the Department of Otolaryngology, Head and Neck Surgery. Previous research has often focused on enhancing the mechanical properties of synthetic materials. However, their low biological activity and weak cell adhesion necessitate compensatory measures. This study aims to capitalize on the advantages of natural materials in cartilage tissue engineering. Sodium alginate, gelatin, tannic acid, and calcium chloride were utilized to prepare bioinks through cross-linking for application in 3D printing cartilage scaffolds. Bone marrow mesenchymal stem cells with multidirectional differentiation potential were chosen as seed cells, with appropriate growth factors incorporated to promote their differentiation into cartilage during in vitro culture. The scaffold laden cells was subsequently implanted into rabbit thyroid cartilage plate defects at the appropriate time. HE staining, toluidine blue staining, Masson staining, and collagen type II staining were employed to assess cartilage defect repair at 4, 8, and 12 weeks, respectively. Results demonstrated that scaffolds made from natural materials could emulate the mechanical properties of fresh cartilage with commendable biocompatibility. Stained sections further confirmed the efficacy of the composite hydrogel scaffolds identified in this study in promoting rabbit thyroid cartilage plate restoration. In summary, this study successfully fabricated a natural material scaffold for rabbit laryngeal cartilage tissue engineering, thereby furnishing a new idea and experience for the clinical application of laryngeal cartilage defect reconstruction.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241300587"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241300587","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the absence of blood vessels, cartilage exhibits extremely limited self-repair capacity. Currently, repairing laryngeal cartilage defects, resulting from conditions such as laryngeal tumors, injury, and congenital structural abnormalities, remains a significant challenge in the Department of Otolaryngology, Head and Neck Surgery. Previous research has often focused on enhancing the mechanical properties of synthetic materials. However, their low biological activity and weak cell adhesion necessitate compensatory measures. This study aims to capitalize on the advantages of natural materials in cartilage tissue engineering. Sodium alginate, gelatin, tannic acid, and calcium chloride were utilized to prepare bioinks through cross-linking for application in 3D printing cartilage scaffolds. Bone marrow mesenchymal stem cells with multidirectional differentiation potential were chosen as seed cells, with appropriate growth factors incorporated to promote their differentiation into cartilage during in vitro culture. The scaffold laden cells was subsequently implanted into rabbit thyroid cartilage plate defects at the appropriate time. HE staining, toluidine blue staining, Masson staining, and collagen type II staining were employed to assess cartilage defect repair at 4, 8, and 12 weeks, respectively. Results demonstrated that scaffolds made from natural materials could emulate the mechanical properties of fresh cartilage with commendable biocompatibility. Stained sections further confirmed the efficacy of the composite hydrogel scaffolds identified in this study in promoting rabbit thyroid cartilage plate restoration. In summary, this study successfully fabricated a natural material scaffold for rabbit laryngeal cartilage tissue engineering, thereby furnishing a new idea and experience for the clinical application of laryngeal cartilage defect reconstruction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维打印的海藻酸钠/明胶/单宁酸/氯化钙支架富含骨髓间充质干细胞,可修复缺损的甲状软骨板。
由于没有血管,软骨的自我修复能力极为有限。目前,修复因喉肿瘤、损伤和先天性结构异常等情况造成的喉软骨缺损仍是耳鼻咽喉头颈外科面临的一项重大挑战。以往的研究通常侧重于提高合成材料的机械性能。然而,由于合成材料的生物活性低、细胞粘附性弱,因此有必要采取补偿措施。本研究旨在利用天然材料在软骨组织工程中的优势。研究利用海藻酸钠、明胶、单宁酸和氯化钙通过交联制备生物墨水,并将其应用于三维打印软骨支架。选择具有多向分化潜能的骨髓间充质干细胞作为种子细胞,并加入适当的生长因子,以促进其在体外培养过程中分化为软骨。随后在适当的时间将含有细胞的支架植入兔甲状软骨板缺损处。HE染色、甲苯胺蓝染色、Masson染色和胶原蛋白II型染色分别用于评估4周、8周和12周时软骨缺损的修复情况。结果表明,由天然材料制成的支架可以模拟新鲜软骨的机械性能,并具有良好的生物相容性。染色切片进一步证实了本研究中发现的复合水凝胶支架在促进兔甲状软骨板修复方面的功效。总之,本研究成功制备了用于兔喉软骨组织工程的天然材料支架,为喉软骨缺损重建的临床应用提供了新的思路和经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. Multifunctional electrospinning periosteum: Development status and prospect. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property. Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1