David Nuñez, Juan Barraza, Juan Guerrero, Luis Díaz, Ajay K Dalai, Venu Babu Borugadda
{"title":"Adsorption of Lufenuron 50-EC Pesticide from Aqueous Solution Using Oil Palm Shell-Derived Activated Carbon.","authors":"David Nuñez, Juan Barraza, Juan Guerrero, Luis Díaz, Ajay K Dalai, Venu Babu Borugadda","doi":"10.3390/ma17215389","DOIUrl":null,"url":null,"abstract":"<p><p>The use of Lufenuron 50-EC pesticide in oil palm crops affects water quality and aquatic life. This study investigated the adsorption of Lufenuron 50-EC from an aqueous solution using activated carbon derived from oil palm shells (OPSs). Activated carbon (AC) was prepared through physical and chemical activation processes in carbon dioxide environments, using potassium hydroxide (KOH) as a chemical activating agent. The resulting AC was characterized using standard techniques. The most favorable operating parameters were physical activation at 900 °C for 2 h, achieving a BET surface area of 548 m<sup>2</sup>/g. For chemical activation, at 800 °C, 1 h, and an impregnation ratio (KOH/biochar) of 2:1 (<i>w</i>/<i>w</i>), a BET surface area of 90 m<sup>2</sup>/g was obtained, which was smaller than that achieved by physical activation. The use of KOH reduced the surface area but generated a high presence of functional groups on the AC surface, which is important for adsorption processes. The AC produced achieved high Lufenuron adsorption yields, reaching a maximum of 96.93%. AC produced at 900 °C with 2 h showed the best performance. Therefore, OPS is an excellent precursor for producing AC with favorable characteristics for pollutant adsorption in aqueous solutions, especially for the insecticide Lufenuron.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215389","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of Lufenuron 50-EC pesticide in oil palm crops affects water quality and aquatic life. This study investigated the adsorption of Lufenuron 50-EC from an aqueous solution using activated carbon derived from oil palm shells (OPSs). Activated carbon (AC) was prepared through physical and chemical activation processes in carbon dioxide environments, using potassium hydroxide (KOH) as a chemical activating agent. The resulting AC was characterized using standard techniques. The most favorable operating parameters were physical activation at 900 °C for 2 h, achieving a BET surface area of 548 m2/g. For chemical activation, at 800 °C, 1 h, and an impregnation ratio (KOH/biochar) of 2:1 (w/w), a BET surface area of 90 m2/g was obtained, which was smaller than that achieved by physical activation. The use of KOH reduced the surface area but generated a high presence of functional groups on the AC surface, which is important for adsorption processes. The AC produced achieved high Lufenuron adsorption yields, reaching a maximum of 96.93%. AC produced at 900 °C with 2 h showed the best performance. Therefore, OPS is an excellent precursor for producing AC with favorable characteristics for pollutant adsorption in aqueous solutions, especially for the insecticide Lufenuron.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.