Hee-Jin Kim, Seung Hun Lee, Dabin Jeon, Sung-Nam Lee
{"title":"High-Performance Sol-Gel-Derived CNT-ZnO Nanocomposite-Based Photodetectors with Controlled Surface Wrinkles.","authors":"Hee-Jin Kim, Seung Hun Lee, Dabin Jeon, Sung-Nam Lee","doi":"10.3390/ma17215325","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the effects of incorporating single-walled carbon nanotubes (CNTs) into sol-gel-derived ZnO thin films to enhance their optoelectronic properties for photodetector applications. ZnO thin films were fabricated on c-plane sapphire substrates with varying CNT concentrations ranging from 0 to 2.0 wt%. Characterization techniques, including high-resolution X-ray diffraction, photoluminescence, and atomic force microscopy, demonstrated the preferential growth of the ZnO (002) facet and improved optical properties with the increase in the CNT content. Electrical measurements revealed that the optimal CNT concentration of 1.5 wt% resulted in a significant increase in the dark current (from 0.34 mA to 1.7 mA) and peak photocurrent (502.9 µA), along with enhanced photoresponsivity. The rising and falling times of the photocurrent were notably reduced at this concentration, indicating improved charge dynamics due to the formation of a p-CNT/n-ZnO heterojunction. The findings suggest that the incorporation of CNTs not only modifies the structural and optical characteristics of ZnO thin films but also significantly enhances their electrical performance, positioning CNT-ZnO composites as promising candidates for advanced photodetector technologies in optoelectronic applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215325","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effects of incorporating single-walled carbon nanotubes (CNTs) into sol-gel-derived ZnO thin films to enhance their optoelectronic properties for photodetector applications. ZnO thin films were fabricated on c-plane sapphire substrates with varying CNT concentrations ranging from 0 to 2.0 wt%. Characterization techniques, including high-resolution X-ray diffraction, photoluminescence, and atomic force microscopy, demonstrated the preferential growth of the ZnO (002) facet and improved optical properties with the increase in the CNT content. Electrical measurements revealed that the optimal CNT concentration of 1.5 wt% resulted in a significant increase in the dark current (from 0.34 mA to 1.7 mA) and peak photocurrent (502.9 µA), along with enhanced photoresponsivity. The rising and falling times of the photocurrent were notably reduced at this concentration, indicating improved charge dynamics due to the formation of a p-CNT/n-ZnO heterojunction. The findings suggest that the incorporation of CNTs not only modifies the structural and optical characteristics of ZnO thin films but also significantly enhances their electrical performance, positioning CNT-ZnO composites as promising candidates for advanced photodetector technologies in optoelectronic applications.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.