Munsik Oh, Mun Seok Jeong, Jaehee Cho, Hyunsoo Kim
{"title":"Hybrid Functional ITO/Silver Nanowire Transparent Conductive Electrodes for Enhanced Output Efficiency of Ultraviolet GaN-Based Light-Emitting Diodes.","authors":"Munsik Oh, Mun Seok Jeong, Jaehee Cho, Hyunsoo Kim","doi":"10.3390/ma17215385","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated hybrid functional transparent conductive electrodes (HFTCEs) composed of indium-tin-oxide (ITO) and silver nanowires (AgNWs) for the enhancement of output efficiency in GaN-based ultraviolet light-emitting diodes (UVLEDs). The HFTCEs demonstrated an optical transmittance of 69.5% at a wavelength of 380 nm and a sheet resistance of 16.4 Ω/sq, while the reference ITO TCE exhibited a transmittance of 76.4% and a sheet resistance of 18.7 Ω/sq. Despite the 8.9% lower optical transmittance, the UVLEDs fabricated with HFTCEs achieved a 25% increase in output efficiency compared to reference UVLEDs. This improvement is attributed to the HFTCE's twofold longer current spreading length under operating forward voltages, and more significantly, the enhanced out-coupling of localized surface plasmon (LSP) resonance with the trapped wave-guided light modes.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215385","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated hybrid functional transparent conductive electrodes (HFTCEs) composed of indium-tin-oxide (ITO) and silver nanowires (AgNWs) for the enhancement of output efficiency in GaN-based ultraviolet light-emitting diodes (UVLEDs). The HFTCEs demonstrated an optical transmittance of 69.5% at a wavelength of 380 nm and a sheet resistance of 16.4 Ω/sq, while the reference ITO TCE exhibited a transmittance of 76.4% and a sheet resistance of 18.7 Ω/sq. Despite the 8.9% lower optical transmittance, the UVLEDs fabricated with HFTCEs achieved a 25% increase in output efficiency compared to reference UVLEDs. This improvement is attributed to the HFTCE's twofold longer current spreading length under operating forward voltages, and more significantly, the enhanced out-coupling of localized surface plasmon (LSP) resonance with the trapped wave-guided light modes.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.