Tamara Gavrilović, Vesna Đorđević, Jovana Periša, Mina Medić, Zoran Ristić, Aleksandar Ćirić, Željka Antić, Miroslav D Dramićanin
{"title":"Luminescence Thermometry with Eu<sup>3+</sup>-Doped Y<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub>: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs.","authors":"Tamara Gavrilović, Vesna Đorđević, Jovana Periša, Mina Medić, Zoran Ristić, Aleksandar Ćirić, Željka Antić, Miroslav D Dramićanin","doi":"10.3390/ma17215354","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu<sup>3+</sup>-doped Y<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‱ K⁻<sup>1</sup> at 472 K, PCA's systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215354","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‱ K⁻1 at 472 K, PCA's systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.