Kalliopi Elli Pavlopoulou, Kateřina Hrůzová, May Kahoush, Nawar Kadi, Alok Patel, Ulrika Rova, Leonidas Matsakas, Paul Christakopoulos
{"title":"Textile Recycling: Efficient Polyester Recovery from Polycotton Blends Using the Heated High-Ethanol Alkaline Aqueous Process.","authors":"Kalliopi Elli Pavlopoulou, Kateřina Hrůzová, May Kahoush, Nawar Kadi, Alok Patel, Ulrika Rova, Leonidas Matsakas, Paul Christakopoulos","doi":"10.3390/polym16213008","DOIUrl":null,"url":null,"abstract":"<p><p>Textile production has doubled in the last 20 years, but only 1% is recycled into new fibers. It is the third largest contributor to water pollution and land use, accounting for 10% of global carbon emissions and 20% of clean water pollution. A key challenge in textile recycling is blended yarns, such as polycotton blends, which consist of polyester and cotton. Chemical recycling offers a solution, in particular, alkali treatment, which hydrolyzes polyester (PET) into its components while preserving cotton fibers. However, conventional methods require high temperatures, long durations, or catalysts. Our study presents, for the first time, the heated high-ethanol alkaline aqueous (HHeAA) process that efficiently hydrolyzes PET from polycotton at lower temperatures and without a catalyst. A near-complete PET hydrolysis was achieved in 20 min at 90 °C, while similar results were obtained at 70 °C and 80 °C with longer reaction times. The process was successfully scaled at 90 °C for 20 min, and complete PET hydrolysis was achieved, with a significantly reduced liquid-to-solid ratio, from 40 to 7 (L per kg), signifying its potential to be implemented in an industrial context. Additionally, the cotton maintained most of its properties after the treatment. This method provides a more sustainable and efficient approach to polycotton recycling.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Textile production has doubled in the last 20 years, but only 1% is recycled into new fibers. It is the third largest contributor to water pollution and land use, accounting for 10% of global carbon emissions and 20% of clean water pollution. A key challenge in textile recycling is blended yarns, such as polycotton blends, which consist of polyester and cotton. Chemical recycling offers a solution, in particular, alkali treatment, which hydrolyzes polyester (PET) into its components while preserving cotton fibers. However, conventional methods require high temperatures, long durations, or catalysts. Our study presents, for the first time, the heated high-ethanol alkaline aqueous (HHeAA) process that efficiently hydrolyzes PET from polycotton at lower temperatures and without a catalyst. A near-complete PET hydrolysis was achieved in 20 min at 90 °C, while similar results were obtained at 70 °C and 80 °C with longer reaction times. The process was successfully scaled at 90 °C for 20 min, and complete PET hydrolysis was achieved, with a significantly reduced liquid-to-solid ratio, from 40 to 7 (L per kg), signifying its potential to be implemented in an industrial context. Additionally, the cotton maintained most of its properties after the treatment. This method provides a more sustainable and efficient approach to polycotton recycling.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.