DNMT3B inhibits PCV2 replication via targeting TMEM37 to regulate Ca2 + influx in PK15 cells

IF 2.4 2区 农林科学 Q3 MICROBIOLOGY Veterinary microbiology Pub Date : 2025-03-16 DOI:10.1016/j.vetmic.2025.110480
Xiaomei Du , Qi Xiao , Li Yang , Yiyi Shan , Yueqing Hu , Wenbin Bao , Shenglong Wu , Zhengchang Wu
{"title":"DNMT3B inhibits PCV2 replication via targeting TMEM37 to regulate Ca2 + influx in PK15 cells","authors":"Xiaomei Du ,&nbsp;Qi Xiao ,&nbsp;Li Yang ,&nbsp;Yiyi Shan ,&nbsp;Yueqing Hu ,&nbsp;Wenbin Bao ,&nbsp;Shenglong Wu ,&nbsp;Zhengchang Wu","doi":"10.1016/j.vetmic.2025.110480","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine circovirus type 2 (PCV2) is the main pathogen causing postweaning multisystemic wasting syndrome, which leads to enormous losses for porcine industry. However, the regulatory mechanism of PCV2 replication in host cells remains not been clarified. Here, pig <em>DNMT3B</em> was identified as be a host regulator associated with PCV2 infection via RNA-seq analysis. We demonstrated that upregulation of <em>DNMT3B</em> expression can effectively inhibit PCV2 replication in PK15 cells. Besides, <em>TMEM37</em> acts as a key downstream target of <em>DNMT3B</em> in PCV2-infected PK15 cells. <em>TMEM37</em> knockdown significantly slowed Ca<sup>2+</sup> influx, and thus inhibited PCV2 replication. Taken together, DNMT3B is required for the PCV2-based infection regulation in host cells. Our findings indicated that DNMT3B inhibits PCV2 replication via targeting <em>TMEM37</em> to regulate Ca<sup>2+</sup> influx in PK15 cells, which offering a theoretical foundation for the use of this gene as a key biomarker for breeding strategies seeking to improve porcine disease resistance.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"304 ","pages":"Article 110480"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525001154","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Porcine circovirus type 2 (PCV2) is the main pathogen causing postweaning multisystemic wasting syndrome, which leads to enormous losses for porcine industry. However, the regulatory mechanism of PCV2 replication in host cells remains not been clarified. Here, pig DNMT3B was identified as be a host regulator associated with PCV2 infection via RNA-seq analysis. We demonstrated that upregulation of DNMT3B expression can effectively inhibit PCV2 replication in PK15 cells. Besides, TMEM37 acts as a key downstream target of DNMT3B in PCV2-infected PK15 cells. TMEM37 knockdown significantly slowed Ca2+ influx, and thus inhibited PCV2 replication. Taken together, DNMT3B is required for the PCV2-based infection regulation in host cells. Our findings indicated that DNMT3B inhibits PCV2 replication via targeting TMEM37 to regulate Ca2+ influx in PK15 cells, which offering a theoretical foundation for the use of this gene as a key biomarker for breeding strategies seeking to improve porcine disease resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary microbiology
Veterinary microbiology 农林科学-兽医学
CiteScore
5.90
自引率
6.10%
发文量
221
审稿时长
52 days
期刊介绍: Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal. Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge. Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.
期刊最新文献
Fusobacterium necrophorum mediates the inflammatory response in the interdigital skin and fibroblasts of dairy cows via the TNF-α/TNFR1/NF-κB pathway Genomic characterization of Streptococcus suis serotype 31 isolated from one human and 17 clinically asymptomatic pigs in Thailand DNMT3B inhibits PCV2 replication via targeting TMEM37 to regulate Ca2 + influx in PK15 cells Construction and evaluation of recombinant rabies virus encoding three copies codon-optimized G genes as inactivated rabies vaccine in dogs and cats. Mouse models of Tembusu virus infection for differentiating between cluster 2.1 and 2.2 isolates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1