Predicting 'pain genes': multi-modal data integration using probabilistic classifiers and interaction networks.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-10-18 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae156
Na Zhao, David L Bennett, Georgios Baskozos, Allison M Barry
{"title":"Predicting 'pain genes': multi-modal data integration using probabilistic classifiers and interaction networks.","authors":"Na Zhao, David L Bennett, Georgios Baskozos, Allison M Barry","doi":"10.1093/bioadv/vbae156","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurate identification of pain-related genes remains challenging due to the complex nature of pain pathophysiology and the subjective nature of pain reporting in humans. Here, we use machine learning to identify possible 'pain genes'. Labelling was based on a gold-standard list with validated involvement across pain conditions, and was trained on a selection of -omics, protein-protein interaction network features, and biological function readouts for each gene.</p><p><strong>Results: </strong>The top-performing model was selected to predict a 'pain score' per gene. The top-ranked genes were then validated against pain-related human SNPs. Functional analysis revealed JAK2/STAT3 signal, ErbB, and Rap1 signalling pathways as promising targets for further exploration, while network topological features contribute significantly to the identification of 'pain' genes. As such, a network based on top-ranked genes was constructed to reveal previously uncharacterized pain-related genes. Together, these novel insights into pain pathogenesis can indicate promising directions for future experimental research.</p><p><strong>Availability and implementation: </strong>These analyses can be further explored using the linked open-source database at https://livedataoxford.shinyapps.io/drg-directory/, which is accompanied by a freely accessible code template and user guide for wider adoption across disciplines.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae156"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Accurate identification of pain-related genes remains challenging due to the complex nature of pain pathophysiology and the subjective nature of pain reporting in humans. Here, we use machine learning to identify possible 'pain genes'. Labelling was based on a gold-standard list with validated involvement across pain conditions, and was trained on a selection of -omics, protein-protein interaction network features, and biological function readouts for each gene.

Results: The top-performing model was selected to predict a 'pain score' per gene. The top-ranked genes were then validated against pain-related human SNPs. Functional analysis revealed JAK2/STAT3 signal, ErbB, and Rap1 signalling pathways as promising targets for further exploration, while network topological features contribute significantly to the identification of 'pain' genes. As such, a network based on top-ranked genes was constructed to reveal previously uncharacterized pain-related genes. Together, these novel insights into pain pathogenesis can indicate promising directions for future experimental research.

Availability and implementation: These analyses can be further explored using the linked open-source database at https://livedataoxford.shinyapps.io/drg-directory/, which is accompanied by a freely accessible code template and user guide for wider adoption across disciplines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测 "疼痛基因":利用概率分类器和交互网络进行多模态数据整合。
动机:由于疼痛病理生理学的复杂性和人类疼痛报告的主观性,准确识别疼痛相关基因仍具有挑战性。在这里,我们利用机器学习来识别可能的 "疼痛基因"。标注工作基于一份黄金标准清单,该清单验证了各疼痛条件下的参与情况,并根据每个基因的组学特征、蛋白-蛋白相互作用网络特征和生物功能读数进行训练:结果:选择了表现最好的模型来预测每个基因的 "疼痛评分"。然后根据与疼痛相关的人类 SNP 验证了排名靠前的基因。功能分析显示,JAK2/STAT3 信号、ErbB 和 Rap1 信号通路是有希望进一步探索的目标,而网络拓扑特征则对 "疼痛 "基因的鉴定有很大帮助。因此,我们根据排名靠前的基因构建了一个网络,以揭示以前未表征的疼痛相关基因。这些关于疼痛发病机制的新见解共同为未来的实验研究指明了方向:您可以使用 https://livedataoxford.shinyapps.io/drg-directory/ 上的链接开放源码数据库进一步探索这些分析,该数据库附有可免费访问的代码模板和用户指南,以便在各学科中更广泛地采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. LUKB: preparing local UK Biobank data for analysis. Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics. AAclust: k-optimized clustering for selecting redundancy-reduced sets of amino acid scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1