Isopeptor: a tool for detecting intramolecular isopeptide bonds in protein structures.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf049
Francesco Costa, Rob Barringer, Ioannis Riziotis, Antonina Andreeva, Alex Bateman
{"title":"Isopeptor: a tool for detecting intramolecular isopeptide bonds in protein structures.","authors":"Francesco Costa, Rob Barringer, Ioannis Riziotis, Antonina Andreeva, Alex Bateman","doi":"10.1093/bioadv/vbaf049","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Intramolecular isopeptide bonds contribute to the structural stability of proteins, and have primarily been identified in domains of bacterial fibrillar adhesins and pili. At present, there is no systematic method available to detect them in newly determined molecular structures. This can result in mis-annotations and incorrect modeling.</p><p><strong>Results: </strong>Here, we present Isopeptor, a computational tool designed to predict the presence of intramolecular isopeptide bonds in experimentally determined structures. Isopeptor utilizes structure-guided template matching via the Jess software, combined with a logistic regression classifier that incorporates root mean square deviation and relative solvent accessible area as key features. The tool demonstrates a precision of 1.0 and a recall of 0.947 when tested on a Protein Data Bank subset of domains known to contain intramolecular isopeptide bonds that have been deposited with incorrectly modeled geometries.</p><p><strong>Availability and implementation: </strong>Isopeptor's Python-based implementation supports integration into bioinformatics workflows and can be accessed via the command line, through a Python API or via a Google Colaboratory implementation (https://colab.research.google.com/github/FranceCosta/Isopeptor_development/blob/main/notebooks/Isopeptide_finder.ipynb). Source code is hosted on GitHub (https://github.com/FranceCosta/isopeptor) and can be installed via the Python package installation manager PIP.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf049"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Intramolecular isopeptide bonds contribute to the structural stability of proteins, and have primarily been identified in domains of bacterial fibrillar adhesins and pili. At present, there is no systematic method available to detect them in newly determined molecular structures. This can result in mis-annotations and incorrect modeling.

Results: Here, we present Isopeptor, a computational tool designed to predict the presence of intramolecular isopeptide bonds in experimentally determined structures. Isopeptor utilizes structure-guided template matching via the Jess software, combined with a logistic regression classifier that incorporates root mean square deviation and relative solvent accessible area as key features. The tool demonstrates a precision of 1.0 and a recall of 0.947 when tested on a Protein Data Bank subset of domains known to contain intramolecular isopeptide bonds that have been deposited with incorrectly modeled geometries.

Availability and implementation: Isopeptor's Python-based implementation supports integration into bioinformatics workflows and can be accessed via the command line, through a Python API or via a Google Colaboratory implementation (https://colab.research.google.com/github/FranceCosta/Isopeptor_development/blob/main/notebooks/Isopeptide_finder.ipynb). Source code is hosted on GitHub (https://github.com/FranceCosta/isopeptor) and can be installed via the Python package installation manager PIP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Isopeptor: a tool for detecting intramolecular isopeptide bonds in protein structures. Quantifying uncertainty in microbiome-based prediction using Gaussian processes with microbial community dissimilarities. LipidSigR: a R-based solution for integrated lipidomics data analysis and visualization. A unified hypothesis-free feature extraction framework for diverse epigenomic data. Drug target assessments: classifying target modulation and associated health effects using multi-level BERT-based classification models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1