LipidSigR: a R-based solution for integrated lipidomics data analysis and visualization.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf047
Chia-Hsin Liu, Pei-Chun Shen, Meng-Hsin Tsai, Hsiu-Cheng Liu, Wen-Jen Lin, Yo-Liang Lai, Yu-De Wang, Mien-Chie Hung, Wei-Chung Cheng
{"title":"LipidSigR: a R-based solution for integrated lipidomics data analysis and visualization.","authors":"Chia-Hsin Liu, Pei-Chun Shen, Meng-Hsin Tsai, Hsiu-Cheng Liu, Wen-Jen Lin, Yo-Liang Lai, Yu-De Wang, Mien-Chie Hung, Wei-Chung Cheng","doi":"10.1093/bioadv/vbaf047","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Lipidomics is a rapidly expanding field focused on studying lipid species and classes within biological systems. As the field evolves, there is an increasing demand for user-friendly, open-source software tools capable of handling large and complex datasets while keeping pace with technological advancements. LipidSig, a widely used web-based platform, has been instrumental in data analysis and visualization of lipidomics. However, its limitations become evident when users want to build customized workflows. To address the limitation, we developed a companion R package, LipidSigR, based on the R code of the LipidSig web platform.</p><p><strong>Results: </strong>LipidSigR offers greater flexibility, allowing researchers with basic R programming skills to modify and adapt workflows according to their needs. It has been rigorously tested following CRAN guidelines to ensure compatibility and reproducibility. In demonstrating its functionality, we analyze the case with commonly used experimental design, case versus control, in lipidomics studies. Researchers can follow the use case to explore the key capabilities and build customized lipidomics data analysis workflows using LipidSigR.</p><p><strong>Availability and implementation: </strong>LipidSigR is freely available from https://lipidsig.bioinfomics.org/lipidsigr/index.html and https://github.com/BioinfOMICS/LipidSigR.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf047"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Lipidomics is a rapidly expanding field focused on studying lipid species and classes within biological systems. As the field evolves, there is an increasing demand for user-friendly, open-source software tools capable of handling large and complex datasets while keeping pace with technological advancements. LipidSig, a widely used web-based platform, has been instrumental in data analysis and visualization of lipidomics. However, its limitations become evident when users want to build customized workflows. To address the limitation, we developed a companion R package, LipidSigR, based on the R code of the LipidSig web platform.

Results: LipidSigR offers greater flexibility, allowing researchers with basic R programming skills to modify and adapt workflows according to their needs. It has been rigorously tested following CRAN guidelines to ensure compatibility and reproducibility. In demonstrating its functionality, we analyze the case with commonly used experimental design, case versus control, in lipidomics studies. Researchers can follow the use case to explore the key capabilities and build customized lipidomics data analysis workflows using LipidSigR.

Availability and implementation: LipidSigR is freely available from https://lipidsig.bioinfomics.org/lipidsigr/index.html and https://github.com/BioinfOMICS/LipidSigR.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LipidSigR:基于r的集成脂质组学数据分析和可视化解决方案。
动机:脂质组学是一个快速发展的领域,专注于研究生物系统中的脂质种类和类别。随着该领域的发展,对用户友好的开源软件工具的需求越来越大,这些工具能够处理大型复杂的数据集,同时跟上技术进步的步伐。LipidSig是一个广泛使用的基于网络的平台,在脂质组学的数据分析和可视化方面发挥了重要作用。然而,当用户想要构建自定义工作流时,它的局限性就变得明显了。为了解决这个限制,我们基于LipidSig web平台的R代码开发了一个配套的R包LipidSigR。结果:LipidSigR提供了更大的灵活性,允许具有基本R编程技能的研究人员根据他们的需要修改和适应工作流程。它已经按照CRAN指南进行了严格的测试,以确保兼容性和可重复性。为了证明其功能,我们分析了脂质组学研究中常用的实验设计,病例与对照。研究人员可以遵循用例来探索关键功能,并使用LipidSigR构建定制的脂组学数据分析工作流程。可用性和实现:LipidSigR可以从https://lipidsig.bioinfomics.org/lipidsigr/index.html和https://github.com/BioinfOMICS/LipidSigR免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Amos Bairoch (1957-2025): pioneer of bioinformatics and founder of Swiss-Prot. Age effect explorer: a Shiny application to browse and visualize tissue-specific age-related gene expression changes. Transcriptional and epigenetic regulation of Ca2+-signaling genes in hepatitis B-derived hepatocellular carcinoma and their association with the cancer hallmarks. Cell type annotation using large language models (LLMs) and CytoAnalyst. CaRinDB: an integrated database of common cancer mutations and residue interaction network parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1