Suriya Venkatesan, Jens Mitzel, Sambal Shashank Ambu, Tobias Morawietz, Indro Biswas, Oscar Recalde, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Deven P. Estes, Karsten Wegner, Pawel Gazdzicki, Aldo Saul Gago, Kaspar Andreas Friedrich
{"title":"Rapid Scalable One-step Production of Catalysts for Low-Iridium Content Proton Exchange Membrane Water Electrolyzers","authors":"Suriya Venkatesan, Jens Mitzel, Sambal Shashank Ambu, Tobias Morawietz, Indro Biswas, Oscar Recalde, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Deven P. Estes, Karsten Wegner, Pawel Gazdzicki, Aldo Saul Gago, Kaspar Andreas Friedrich","doi":"10.1002/aenm.202401659","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production, although its widespread development with state-of-the-art loadings is threatened by the scarcity of iridium (Ir). Homogeneous dispersion of Ir in an immiscible electro-ceramic matrix can enhance catalytic mass activity and structural stability. The study presents Ir<sub>y</sub>Sn<sub>0.9(1−</sub><i><sub>y</sub></i><sub>)</sub>Sb<sub>0.1(1−</sub><i><sub>y</sub></i><sub>)</sub>O<i><sub>x</sub></i> solid solutions produced by highly scalable flame spray pyrolysis (FSP) process as efficient anode electrocatalysts for PEMWE, containing only 0.2 mg cm<sup>−2</sup> of Ir in the catalyst layer (CL). Intense mixing of metal vapor and large thermal gradients in the precursor-derived high-temperature flame aids stabilizing sub-nanoscale entropic mixing within self-preserved 4–6 nm particles. Detailed investigations confirm that the one-step prepared solid solution electrocatalysts exhibit up to fourfold higher activity toward the oxygen evolution reaction (OER) compared to Ir black. The anode of a PEMWE utilizing this catalyst exhibits high performance and stability over 2000 h but with tenfold lower Ir loading than the state-of-art.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"17 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202401659","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production, although its widespread development with state-of-the-art loadings is threatened by the scarcity of iridium (Ir). Homogeneous dispersion of Ir in an immiscible electro-ceramic matrix can enhance catalytic mass activity and structural stability. The study presents IrySn0.9(1−y)Sb0.1(1−y)Ox solid solutions produced by highly scalable flame spray pyrolysis (FSP) process as efficient anode electrocatalysts for PEMWE, containing only 0.2 mg cm−2 of Ir in the catalyst layer (CL). Intense mixing of metal vapor and large thermal gradients in the precursor-derived high-temperature flame aids stabilizing sub-nanoscale entropic mixing within self-preserved 4–6 nm particles. Detailed investigations confirm that the one-step prepared solid solution electrocatalysts exhibit up to fourfold higher activity toward the oxygen evolution reaction (OER) compared to Ir black. The anode of a PEMWE utilizing this catalyst exhibits high performance and stability over 2000 h but with tenfold lower Ir loading than the state-of-art.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.