{"title":"DFC-Net: a dual-path frequency-domain cross-attention fusion network for retinal image quality assessment.","authors":"Xiaoyan Kui, Zeru Hai, Beiji Zou, Wei Liang, Liming Chen","doi":"10.1364/BOE.531292","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal image quality assessment (RIQA) is crucial for diagnosing various eye diseases and ensuring the accuracy of diagnostic analyses based on retinal fundus images. Traditional deep convolutional neural networks (CNNs) for RIQA face challenges such as over-reliance on RGB image brightness and difficulty in differentiating closely ranked image quality categories. To address these issues, we introduced the Dual-Path Frequency-domain Cross-attention Network (DFC-Net), which integrates RGB images and contrast-enhanced images using contrast-limited adaptive histogram equalization (CLAHE) as dual inputs. This approach improves structure detail detection and feature extraction. We also incorporated a frequency-domain attention mechanism (FDAM) to focus selectively on frequency components indicative of quality degradations and a cross-attention mechanism (CAM) to optimize the integration of dual inputs. Our experiments on the EyeQ and RIQA-RFMiD datasets demonstrated significant improvements, achieving a precision of 0.8895, recall of 0.8923, F1-score of 0.8909, and a Kappa score of 0.9191 on the EyeQ dataset. On the RIQA-RFMiD dataset, the precision was 0.702, recall 0.6729, F1-score 0.6869, and Kappa score 0.7210, outperforming current state-of-the-art approaches.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6399-6415"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.531292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Retinal image quality assessment (RIQA) is crucial for diagnosing various eye diseases and ensuring the accuracy of diagnostic analyses based on retinal fundus images. Traditional deep convolutional neural networks (CNNs) for RIQA face challenges such as over-reliance on RGB image brightness and difficulty in differentiating closely ranked image quality categories. To address these issues, we introduced the Dual-Path Frequency-domain Cross-attention Network (DFC-Net), which integrates RGB images and contrast-enhanced images using contrast-limited adaptive histogram equalization (CLAHE) as dual inputs. This approach improves structure detail detection and feature extraction. We also incorporated a frequency-domain attention mechanism (FDAM) to focus selectively on frequency components indicative of quality degradations and a cross-attention mechanism (CAM) to optimize the integration of dual inputs. Our experiments on the EyeQ and RIQA-RFMiD datasets demonstrated significant improvements, achieving a precision of 0.8895, recall of 0.8923, F1-score of 0.8909, and a Kappa score of 0.9191 on the EyeQ dataset. On the RIQA-RFMiD dataset, the precision was 0.702, recall 0.6729, F1-score 0.6869, and Kappa score 0.7210, outperforming current state-of-the-art approaches.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.