Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2025-02-26 eCollection Date: 2025-03-01 DOI:10.1364/BOE.549363
Zhenya Zang, Mingliang Pan, Yuanzhe Zhang, David Day Uei Li
{"title":"Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.","authors":"Zhenya Zang, Mingliang Pan, Yuanzhe Zhang, David Day Uei Li","doi":"10.1364/BOE.549363","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a fast and accurate online training method for blood flow index (BFI) and relative BFI (rBFI) reconstruction in diffuse correlation spectroscopy (DCS). We implement rigorous mathematical models to simulate the auto-correlation functions (<i>g</i> <sub>2</sub>) for semi-infinite homogeneous and three-layer human brain models. We implemented a fast online training algorithm known as random vector functional link (RVFL) to reconstruct BFI from noisy <i>g</i> <sub>2</sub>. We extensively evaluated RVFL regarding both speed and accuracy for training and inference. Moreover, we compared RVFL with extreme learning machine (ELM) architecture, a conventional convolutional neural network (CNN), and three fitting algorithms. Results from semi-infinite and three-layer models indicate that RVFL achieves higher accuracy than the other algorithms, as evidenced by comprehensive metrics. While RVFL offers comparable accuracy to CNNs, it boosts training speeds that are 3900-fold faster and inference speeds that are 19.8-fold faster, enhancing its generalizability across different experimental settings. We also used <i>g</i> <sub>2</sub> from one- and three-layer Monte Carlo (MC)-based <i>in-silico</i> simulations, as well as from analytical models, to compare the accuracy and consistency of the results obtained from RVFL and ELM. Furthermore, we discuss how RVFL is more suitable for embedded hardware due to its lower computational complexity than ELM and CNN for training and inference.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1254-1269"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.549363","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a fast and accurate online training method for blood flow index (BFI) and relative BFI (rBFI) reconstruction in diffuse correlation spectroscopy (DCS). We implement rigorous mathematical models to simulate the auto-correlation functions (g 2) for semi-infinite homogeneous and three-layer human brain models. We implemented a fast online training algorithm known as random vector functional link (RVFL) to reconstruct BFI from noisy g 2. We extensively evaluated RVFL regarding both speed and accuracy for training and inference. Moreover, we compared RVFL with extreme learning machine (ELM) architecture, a conventional convolutional neural network (CNN), and three fitting algorithms. Results from semi-infinite and three-layer models indicate that RVFL achieves higher accuracy than the other algorithms, as evidenced by comprehensive metrics. While RVFL offers comparable accuracy to CNNs, it boosts training speeds that are 3900-fold faster and inference speeds that are 19.8-fold faster, enhancing its generalizability across different experimental settings. We also used g 2 from one- and three-layer Monte Carlo (MC)-based in-silico simulations, as well as from analytical models, to compare the accuracy and consistency of the results obtained from RVFL and ELM. Furthermore, we discuss how RVFL is more suitable for embedded hardware due to its lower computational complexity than ELM and CNN for training and inference.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Adaptive Raman spectral unmixing method based on Voigt peak compensation for quantitative analysis of cellular biochemical components. Exploiting the detector distance information in image scanning microscopy by phasor-based SPLIT-ISM. Active remote focus stabilization in oblique plane microscopy. Controlling ocular longitudinal chromatic aberration using a spatial light modulator. Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1