Julio C. Fernandes P. Brito , Geo Paul , Claudio Cassino , Ivana Miletto , Leonardo Marchese , Enrica Gianotti
{"title":"Integrated in situ spectroscopic characterization of bi-functional nanoporous hybrid catalysts","authors":"Julio C. Fernandes P. Brito , Geo Paul , Claudio Cassino , Ivana Miletto , Leonardo Marchese , Enrica Gianotti","doi":"10.1016/j.mtcata.2024.100075","DOIUrl":null,"url":null,"abstract":"<div><div>Bi-functional catalysts possess various catalytic sites and can catalyze different types of reactions in a single-pot cascade manner. Herein, we report the synthesis and characterization of mono- and bifunctional silica-based mesoporous hybrid catalysts involving acid and base active sites. The ability for cooperative catalysis has been investigated using a multi-technique approach involving powder X-ray diffraction, FT-IR, and multinuclear MAS NMR spectroscopy, as well as thermogravimetric analysis. To elucidate the nature and strength of multifunctional catalytic sites, different types of probe molecules were employed and studied using spectroscopic techniques. The results show that the activity of the mesoporous surface-grafted acid and/or base sites is directly related to the intimacy criterion, the separation between the different types of catalytic sites. The presence or absence of mutual interactions between the different catalytic sites dictates the selectivity and yield of the reactions.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"7 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bi-functional catalysts possess various catalytic sites and can catalyze different types of reactions in a single-pot cascade manner. Herein, we report the synthesis and characterization of mono- and bifunctional silica-based mesoporous hybrid catalysts involving acid and base active sites. The ability for cooperative catalysis has been investigated using a multi-technique approach involving powder X-ray diffraction, FT-IR, and multinuclear MAS NMR spectroscopy, as well as thermogravimetric analysis. To elucidate the nature and strength of multifunctional catalytic sites, different types of probe molecules were employed and studied using spectroscopic techniques. The results show that the activity of the mesoporous surface-grafted acid and/or base sites is directly related to the intimacy criterion, the separation between the different types of catalytic sites. The presence or absence of mutual interactions between the different catalytic sites dictates the selectivity and yield of the reactions.
双功能催化剂具有不同的催化位点,能以单锅级联方式催化不同类型的反应。在此,我们报告了涉及酸和碱活性位点的单功能和双功能硅基介孔杂化催化剂的合成和表征。我们采用粉末 X 射线衍射、傅立叶变换红外光谱、多核 MAS NMR 光谱以及热重分析等多技术方法,对其协同催化能力进行了研究。为了阐明多功能催化位点的性质和强度,采用了不同类型的探针分子,并利用光谱技术对其进行了研究。结果表明,介孔表面接枝酸和/或碱位点的活性与亲和性标准,即不同类型催化位点之间的分离度直接相关。不同催化位点之间是否存在相互作用决定了反应的选择性和产率。