Víctor Castrejón-Comas , Nil Mataró , Leonor Resina , David Zanuy , Quim Nuñez-Aulina , Joel Sánchez-Morán , Hamidreza Enshaei , Marc Arnau , Helena Muñoz-Galán , Joshua C. Worch , Andrew P. Dove , Carlos Alemán , Maria M. Pérez-Madrigal
{"title":"Electro-responsive hyaluronic acid-based click-hydrogels for wound healing","authors":"Víctor Castrejón-Comas , Nil Mataró , Leonor Resina , David Zanuy , Quim Nuñez-Aulina , Joel Sánchez-Morán , Hamidreza Enshaei , Marc Arnau , Helena Muñoz-Galán , Joshua C. Worch , Andrew P. Dove , Carlos Alemán , Maria M. Pérez-Madrigal","doi":"10.1016/j.carbpol.2024.122941","DOIUrl":null,"url":null,"abstract":"<div><div>With the aim of healing challenging skin wounds, electro-responsive click-hydrogels made of hyaluronic acid (clickHA) crosslinked with a modified polyethylene glycol precursor (PEG) were prepared by semi-interpenetrating a conducting polymer, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH) by oxidative polymerization. The porosity and pore size of the mixed hydrogel, clickHA/PEDOT-MeOH, were both higher than those determined for the hydrogel without PEDOT-MeOH, while a honeycomb-like morphology with PEDOT-MeOH covering the pore walls was observed. Although such PEDOT-MeOH-induced changes did not influence the water absorption capacity of clickHA, they drastically affected the mechanical and electrochemical behavior. More specifically, the semi-interpenetration of PEDOT-MeOH into clickHA resulted in an increase of the Young's modulus, the compressive strength and, especially, the electrochemical activity. The biocompatibility and the potential for skin regeneration of clickHA/PEDOT-MeOH were preliminary assessed using viability and wound-healing assays with epithelial cells. Not only is the conducting hydrogel formulation biocompatible, but also promotes efficient cell migration by electrostimulation using a small voltage (0.5 V) for a short time (15 min). Thus, in just 1 h the wound gap was repaired, and a homogeneous monolayer of migrated cells was formed.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122941"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
With the aim of healing challenging skin wounds, electro-responsive click-hydrogels made of hyaluronic acid (clickHA) crosslinked with a modified polyethylene glycol precursor (PEG) were prepared by semi-interpenetrating a conducting polymer, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH) by oxidative polymerization. The porosity and pore size of the mixed hydrogel, clickHA/PEDOT-MeOH, were both higher than those determined for the hydrogel without PEDOT-MeOH, while a honeycomb-like morphology with PEDOT-MeOH covering the pore walls was observed. Although such PEDOT-MeOH-induced changes did not influence the water absorption capacity of clickHA, they drastically affected the mechanical and electrochemical behavior. More specifically, the semi-interpenetration of PEDOT-MeOH into clickHA resulted in an increase of the Young's modulus, the compressive strength and, especially, the electrochemical activity. The biocompatibility and the potential for skin regeneration of clickHA/PEDOT-MeOH were preliminary assessed using viability and wound-healing assays with epithelial cells. Not only is the conducting hydrogel formulation biocompatible, but also promotes efficient cell migration by electrostimulation using a small voltage (0.5 V) for a short time (15 min). Thus, in just 1 h the wound gap was repaired, and a homogeneous monolayer of migrated cells was formed.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.