Accelerating repair of infected bone defects through post-reinforced injectable hydrogel mediated antibacterial/immunoregulatory microenvironment at bone-hydrogel interface
Zheng Wang , Ying Chu , Jingyi Du , Yan Hu , Huimin Wang , Hanghang Liu , Changying Yang , Man Wang , Jiabing Ran , Aixi Yu
{"title":"Accelerating repair of infected bone defects through post-reinforced injectable hydrogel mediated antibacterial/immunoregulatory microenvironment at bone-hydrogel interface","authors":"Zheng Wang , Ying Chu , Jingyi Du , Yan Hu , Huimin Wang , Hanghang Liu , Changying Yang , Man Wang , Jiabing Ran , Aixi Yu","doi":"10.1016/j.carbpol.2024.123082","DOIUrl":null,"url":null,"abstract":"<div><div>Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce <em>in situ</em> crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability. Owing to the specific structural composition, the FCRT hydrogel could sustainedly release Tob and RosA molecules at the IBD interface, effectively eliminating <em>in situ</em> bacterial infection. In addition, the released RosA molecules also induced the M<sub>2</sub> polarization of <em>in situ</em> macrophages (M<sub>φ</sub>), which was identified to be related to the NF-κB and PI3K-AKT pathways, therefore promoting the osteogenic differentiation of <em>in situ</em> bone marrow stromal cells (BMSCs). Due to the simultaneous antibacterial/osteo-immunoregulatory microenvironment at the IBD interface, the repair of IBDs was proved to be greatly accelerated by the FCRT hydrogel.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"Article 123082"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724013080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability. Owing to the specific structural composition, the FCRT hydrogel could sustainedly release Tob and RosA molecules at the IBD interface, effectively eliminating in situ bacterial infection. In addition, the released RosA molecules also induced the M2 polarization of in situ macrophages (Mφ), which was identified to be related to the NF-κB and PI3K-AKT pathways, therefore promoting the osteogenic differentiation of in situ bone marrow stromal cells (BMSCs). Due to the simultaneous antibacterial/osteo-immunoregulatory microenvironment at the IBD interface, the repair of IBDs was proved to be greatly accelerated by the FCRT hydrogel.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.