Polyetherimide copolymer film with room-temperature self-healing properties and high breakdown field strength

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2024-10-23 DOI:10.1016/j.ceramint.2024.10.252
Zeyu Ning, Zhuo Wang, Ting Zhao, Ronghui Ye, Jinteng Kang, Zhuang Liu, JiaoJiao Wang
{"title":"Polyetherimide copolymer film with room-temperature self-healing properties and high breakdown field strength","authors":"Zeyu Ning,&nbsp;Zhuo Wang,&nbsp;Ting Zhao,&nbsp;Ronghui Ye,&nbsp;Jinteng Kang,&nbsp;Zhuang Liu,&nbsp;JiaoJiao Wang","doi":"10.1016/j.ceramint.2024.10.252","DOIUrl":null,"url":null,"abstract":"<div><div>With the waste of resources caused by human activities, it has gradually become an increasingly prominent social problem. The development of self-healing polymers in the field of insulation has attracted widespread attention. Develop polymer matrices with efficient healing efficiency and sound insulation properties to achieve green and sustainable resource conservation. In addition, improving the dielectric properties of intrinsic self-healing matrices has been a hot topic. In this work, we developed a new PEI matrix-modified self-healing polymer substrate that provides a breakdown field strength of 240 kV/mm and self-healing properties at room temperature, this has significantly improved the dielectric properties over other previously reported self-healing polymers. In addition to the abovementioned performance, we found significant differences in thermodynamic behavior in the synthesized end-modified polymers. By dielectric characterization (LCR), the breakdown composite can be left at room temperature for 60 min, and the material can recover 80 % of the initial properties without external intervention(This is demonstrated by the fact that its DC conductivity at 60 min of autonomous healing was significantly changed from that of the freshly electrically pierced DC conductivity and remained around 5.38 × 10<sup>−11</sup> S/cm for a longer period of time thereafter). The microscopic morphology of the modified PEI matrix was observed by scanning electron microscopy (SEM) and EDS surface elemental analysis, which further supports the existence of metal coordination structures. These findings can further deepen the thinking of self-healing dielectric composites. The work inspired by this may break the limits and take self-healing composite dielectric materials to a new height.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 52152-52157"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224047734","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

With the waste of resources caused by human activities, it has gradually become an increasingly prominent social problem. The development of self-healing polymers in the field of insulation has attracted widespread attention. Develop polymer matrices with efficient healing efficiency and sound insulation properties to achieve green and sustainable resource conservation. In addition, improving the dielectric properties of intrinsic self-healing matrices has been a hot topic. In this work, we developed a new PEI matrix-modified self-healing polymer substrate that provides a breakdown field strength of 240 kV/mm and self-healing properties at room temperature, this has significantly improved the dielectric properties over other previously reported self-healing polymers. In addition to the abovementioned performance, we found significant differences in thermodynamic behavior in the synthesized end-modified polymers. By dielectric characterization (LCR), the breakdown composite can be left at room temperature for 60 min, and the material can recover 80 % of the initial properties without external intervention(This is demonstrated by the fact that its DC conductivity at 60 min of autonomous healing was significantly changed from that of the freshly electrically pierced DC conductivity and remained around 5.38 × 10−11 S/cm for a longer period of time thereafter). The microscopic morphology of the modified PEI matrix was observed by scanning electron microscopy (SEM) and EDS surface elemental analysis, which further supports the existence of metal coordination structures. These findings can further deepen the thinking of self-healing dielectric composites. The work inspired by this may break the limits and take self-healing composite dielectric materials to a new height.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有室温自修复特性和高击穿场强的聚醚酰亚胺共聚物薄膜
随着人类活动造成的资源浪费,已逐渐成为一个日益突出的社会问题。自愈合聚合物在隔音领域的发展引起了广泛关注。开发具有高效愈合效率和隔音性能的聚合物基体,实现绿色可持续的资源节约。此外,改善本征自愈合基质的介电性能也一直是热门话题。在这项工作中,我们开发了一种新的 PEI 基体改性自愈合聚合物基底,其击穿场强可达 240 kV/mm,并具有室温下自愈合的特性,与之前报道的其他自愈合聚合物相比,显著提高了介电性能。除了上述性能外,我们还发现合成的末端改性聚合物在热力学行为上存在显著差异。通过介电特性分析(LCR),击穿的复合材料可在室温下放置 60 分钟,且无需外部干预即可恢复 80% 的初始特性(这表现在其在自主愈合 60 分钟后的直流电导率与刚电穿孔时的直流电导率相比发生了显著变化,并在此后较长时间内保持在 5.38 × 10-11 S/cm 左右)。通过扫描电子显微镜(SEM)和 EDS 表面元素分析观察了改性 PEI 基体的微观形貌,进一步证实了金属配位结构的存在。这些发现可以进一步深化对自修复介电复合材料的思考。受此启发的研究工作可能会打破极限,将自愈合复合介电材料推向一个新的高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Polyetherimide copolymer film with room-temperature self-healing properties and high breakdown field strength Effect of epoxy resin addition on the acoustic impedance, microstructure, dielectric and piezoelectric properties of 1–3 connectivity lead-free barium zirconate titanate ceramic cement-based composites High-efficiency 1.6 μm-band fiber laser based on single Er3+-doped tungsten tellurite glass with high mechanical strength through tailored glass network Improvement of energy storage properties of BNT-based ceramics via compositional modification Effects of mechanical alloying methods on structural phase stability, chemical state, optical, electrical and ferroelectric properties in Sc-doped α-Fe2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1