High-efficiency 1.6 μm-band fiber laser based on single Er3+-doped tungsten tellurite glass with high mechanical strength through tailored glass network
Lulu Xu , Yuzhou Pan , Guanghui Wang , Fajian He , Shixun Dai
{"title":"High-efficiency 1.6 μm-band fiber laser based on single Er3+-doped tungsten tellurite glass with high mechanical strength through tailored glass network","authors":"Lulu Xu , Yuzhou Pan , Guanghui Wang , Fajian He , Shixun Dai","doi":"10.1016/j.ceramint.2024.09.225","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the correlation between the Raman structure, thermal stability, and mechanical properties of TeO<sub>2</sub>-ZnO-La<sub>2</sub>O<sub>3</sub>–WO<sub>3</sub> glasses with varying WO<sub>3</sub> contents are systematically established. By exploring the critical point in the transformation process of glass network structural units, the optimal glass components of 74TeO<sub>2</sub>-12ZnO-5La<sub>2</sub>O<sub>3</sub>–9WO<sub>3</sub> glass possess the maximum thermal stability (158 °C) and the highest mechanical properties at the same time. The maximum Vicker hardness and Young's modulus of the optimal glass can reach up to 4.007 GPa and 56.212 GPa, which are higher than those of the well-known TeO<sub>2</sub>-ZnO-Na<sub>2</sub>O (TZN) and TeO<sub>2</sub>-ZnO-La<sub>2</sub>O<sub>3</sub> (TZL) glasses. Furthermore, the 0.5 mol% Er<sup>3+</sup>-doped glass at this critical point (TZLW-0.5Er) exhibits a higher laser figure of merit (54.29 × 10<sup>−21</sup> cm<sup>2</sup> ms), a larger laser gain bandwidth value (116 nm) and higher emission cross-sections at 1600 nm (2.52 × 10<sup>−21</sup> cm<sup>2</sup>) and 1625 nm (1.06 × 10<sup>−21</sup> cm<sup>2</sup>) than other host glasses. Finally, high-efficiency laser outputs at 1600 and 1625 nm based on TZLW-0.5Er glass fiber are successfully achieved by simulation. These results show the greater practical potential of TZLW-0.5Er glass with higher mechanical strength compared to TZN and TZL fibers for the 1.6 μm-band laser.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 48977-48987"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224042342","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the correlation between the Raman structure, thermal stability, and mechanical properties of TeO2-ZnO-La2O3–WO3 glasses with varying WO3 contents are systematically established. By exploring the critical point in the transformation process of glass network structural units, the optimal glass components of 74TeO2-12ZnO-5La2O3–9WO3 glass possess the maximum thermal stability (158 °C) and the highest mechanical properties at the same time. The maximum Vicker hardness and Young's modulus of the optimal glass can reach up to 4.007 GPa and 56.212 GPa, which are higher than those of the well-known TeO2-ZnO-Na2O (TZN) and TeO2-ZnO-La2O3 (TZL) glasses. Furthermore, the 0.5 mol% Er3+-doped glass at this critical point (TZLW-0.5Er) exhibits a higher laser figure of merit (54.29 × 10−21 cm2 ms), a larger laser gain bandwidth value (116 nm) and higher emission cross-sections at 1600 nm (2.52 × 10−21 cm2) and 1625 nm (1.06 × 10−21 cm2) than other host glasses. Finally, high-efficiency laser outputs at 1600 and 1625 nm based on TZLW-0.5Er glass fiber are successfully achieved by simulation. These results show the greater practical potential of TZLW-0.5Er glass with higher mechanical strength compared to TZN and TZL fibers for the 1.6 μm-band laser.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.