High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-17 DOI:10.1016/j.ijhydene.2024.11.174
Ameer Abdullah , Fawad Tariq , Mandar A. Kulkarni , Hamza Thaalbi , Haseeb Ud Din , Soon Hyung Kang , Sang-Wan Ryu
{"title":"High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires","authors":"Ameer Abdullah ,&nbsp;Fawad Tariq ,&nbsp;Mandar A. Kulkarni ,&nbsp;Hamza Thaalbi ,&nbsp;Haseeb Ud Din ,&nbsp;Soon Hyung Kang ,&nbsp;Sang-Wan Ryu","doi":"10.1016/j.ijhydene.2024.11.174","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical water splitting is vital for green hydrogen production and clean energy. This study introduces a novel approach: platinum nanoclusters (Pt NCs) decorated GaN nanowires (GNWs) on p++-Si substrates to enhance hydrogen generation efficiency. Highly-crystalline GNWs synthesized via commercial metal-organic chemical vapor deposition provide a scalable platform for hydrogen evolution. To address the cost limitations of Pt-based electrocatalysts, we developed a method for loading ultralow Pt NCs via photoelectrochemical deposition. Investigations underscore the Pt–Ga sites' crucial role in promoting efficient H<sub>2</sub> production. The Pt NCs/GNWs/p++-Si electrode achieved −10 mA/cm<sup>2</sup> current density at +50 mV vs. the RHE and sustained −20 mA/cm<sup>2</sup> for 90 h under harsh acidic conditions at room temperature and atmospheric pressure with nearly 100% retention. This study offers insights into efficient and stable electrodes for electrochemical H<sub>2</sub> generation.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1257-1265"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting is vital for green hydrogen production and clean energy. This study introduces a novel approach: platinum nanoclusters (Pt NCs) decorated GaN nanowires (GNWs) on p++-Si substrates to enhance hydrogen generation efficiency. Highly-crystalline GNWs synthesized via commercial metal-organic chemical vapor deposition provide a scalable platform for hydrogen evolution. To address the cost limitations of Pt-based electrocatalysts, we developed a method for loading ultralow Pt NCs via photoelectrochemical deposition. Investigations underscore the Pt–Ga sites' crucial role in promoting efficient H2 production. The Pt NCs/GNWs/p++-Si electrode achieved −10 mA/cm2 current density at +50 mV vs. the RHE and sustained −20 mA/cm2 for 90 h under harsh acidic conditions at room temperature and atmospheric pressure with nearly 100% retention. This study offers insights into efficient and stable electrodes for electrochemical H2 generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业上可行的铂纳米簇装饰非极性刻面氮化镓纳米线在苛刻酸性条件下高效电催化制氢
电化学水分离对绿色制氢和清洁能源至关重要。本研究介绍了一种新方法:在 p++-Si 基底上用铂纳米簇(Pt NCs)装饰氮化镓纳米线(GNWs),以提高制氢效率。通过商业金属有机化学气相沉积合成的高结晶 GNW 为氢气进化提供了一个可扩展的平台。为了解决基于铂的电催化剂的成本限制,我们开发了一种通过光电化学沉积负载超低铂NC的方法。研究强调了 Pt-Ga 位点在促进高效制氢方面的关键作用。铂NCs/GNWs/p++-Si电极在+50 mV电压下与RHE相比达到了-10 mA/cm2的电流密度,并在室温和大气压下的苛刻酸性条件下维持-20 mA/cm2达90小时,保留率接近100%。这项研究为高效、稳定的电化学 H2 生成电极提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1