{"title":"Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts","authors":"Yoshihiro Goto , Masashi Kikugawa , Kiyoshi Yamazaki , Hideyuki Matsumoto , Anthony Basuni Hamzah , Shinichi Ookawara , Yuichi Manaka , Tetsuya Nanba , Akinori Sato , Masakazu Aoki","doi":"10.1016/j.ijhydene.2024.11.178","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia has recently attracted attention as a hydrogen carrier and fuel, based on the power-to-fuel concept. This concept can be realized using Ru-supported rare-earth oxides for the synthesis of ammonia from hydrogen and nitrogen (3H<sub>2</sub> + N<sub>2</sub> → 2NH<sub>3</sub>) under mild conditions. However, at a high H/N ratio, Ru catalysts exhibit hydrogen poisoning, which reduces their activity for ammonia synthesis. This study investigates the effect of the H/N ratio on the ammonia synthesis activity of the developed Ru catalyst Ru(5 wt%)/Ce<sub>0.5</sub>La<sub>0.4</sub>Si<sub>0.1</sub>O<sub>1.8</sub> under isothermal conditions (350−500 °C). The optimal H/N ratio for achieving the highest catalytic activity decreases as the temperature is lowered (H/N = 0.5 at 350 °C; H/N = 2.0−2.5 at 450 °C). In a multibed reactor, adjusting the H/N ratio to a lower value in the downstream catalyst beds—where the temperature decreases along the gas flow path—can enhance the overall rate of ammonia production by optimizing the reaction conditions in these cooler stages. We propose a system to control the H/N ratio for each catalyst bed in a multibed reactor and demonstrate an increase in the rate of ammonia production when using a double-bed reactor containing the Ru/Ce<sub>0.5</sub>La<sub>0.4</sub>Si<sub>0.1</sub>O<sub>1.8</sub> catalyst. The proposed system offers various opportunities to accelerate the use of ammonia as a hydrogen carrier and fuel.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1308-1313"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048602","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia has recently attracted attention as a hydrogen carrier and fuel, based on the power-to-fuel concept. This concept can be realized using Ru-supported rare-earth oxides for the synthesis of ammonia from hydrogen and nitrogen (3H2 + N2 → 2NH3) under mild conditions. However, at a high H/N ratio, Ru catalysts exhibit hydrogen poisoning, which reduces their activity for ammonia synthesis. This study investigates the effect of the H/N ratio on the ammonia synthesis activity of the developed Ru catalyst Ru(5 wt%)/Ce0.5La0.4Si0.1O1.8 under isothermal conditions (350−500 °C). The optimal H/N ratio for achieving the highest catalytic activity decreases as the temperature is lowered (H/N = 0.5 at 350 °C; H/N = 2.0−2.5 at 450 °C). In a multibed reactor, adjusting the H/N ratio to a lower value in the downstream catalyst beds—where the temperature decreases along the gas flow path—can enhance the overall rate of ammonia production by optimizing the reaction conditions in these cooler stages. We propose a system to control the H/N ratio for each catalyst bed in a multibed reactor and demonstrate an increase in the rate of ammonia production when using a double-bed reactor containing the Ru/Ce0.5La0.4Si0.1O1.8 catalyst. The proposed system offers various opportunities to accelerate the use of ammonia as a hydrogen carrier and fuel.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.