{"title":"Synergistic insights into the electrocatalytic mechanisms of ZIF-derived Co3S4 on 1T-WS2/WO3 for electrochemical water splitting","authors":"Nimisha Baby , Nagaraj Murugan , Sadhasivam Thangarasu , Yoong Ahm Kim , Tae-Hwan Oh","doi":"10.1016/j.ijhydene.2024.11.098","DOIUrl":null,"url":null,"abstract":"<div><div>Designing a highly effective bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a sensible approach for generating enormous hydrogen fuel by electrochemical water splitting. Herein, a high performance of ZIF-derived Co<sub>3</sub>S<sub>4</sub> on WS<sub>2</sub>-WO<sub>3</sub> electrocatalyst was developed for overall water splitting reactions. For developing the mixed phase of WS<sub>2</sub>-WO<sub>3</sub>, thioacetamide (TAA) played a crucial role as a sulfur source and acted as intercalating agent for expanding the layers of 1T WS<sub>2</sub> via the possible generation of NH<sub>4</sub><sup>+</sup> ion. The high electrocatalytic performances is attained by the homogeneous incorporation and tunable properties of nano-sized Co<sub>3</sub>S<sub>4</sub> on WS<sub>2</sub>-WO<sub>3</sub>. The electrocatalyst showed remarkable HER performance with an overpotential of only 73 mV and good OER efficiency with an overpotential of 307 mV at 10 mA/cm<sup>2</sup>. The long term chronopotentiometry and CV cycles performances convinces the stability of the electrocatalysts. A reasonable two-electrode overall water splitting performance was achieved by the WS<sub>2</sub>-WO<sub>3</sub>/Co<sub>3</sub>S<sub>4</sub> electrocatalyst in an asymmetric device, paving the path for more developments in the design and optimization of electrocatalysts for renewable energy conversion.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1005-1017"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924047724","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing a highly effective bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a sensible approach for generating enormous hydrogen fuel by electrochemical water splitting. Herein, a high performance of ZIF-derived Co3S4 on WS2-WO3 electrocatalyst was developed for overall water splitting reactions. For developing the mixed phase of WS2-WO3, thioacetamide (TAA) played a crucial role as a sulfur source and acted as intercalating agent for expanding the layers of 1T WS2 via the possible generation of NH4+ ion. The high electrocatalytic performances is attained by the homogeneous incorporation and tunable properties of nano-sized Co3S4 on WS2-WO3. The electrocatalyst showed remarkable HER performance with an overpotential of only 73 mV and good OER efficiency with an overpotential of 307 mV at 10 mA/cm2. The long term chronopotentiometry and CV cycles performances convinces the stability of the electrocatalysts. A reasonable two-electrode overall water splitting performance was achieved by the WS2-WO3/Co3S4 electrocatalyst in an asymmetric device, paving the path for more developments in the design and optimization of electrocatalysts for renewable energy conversion.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.