Fengqiu Chen , Qiu Wang , Shengda Lin , Huanhu Luo , Wanjin Yu , Wucan Liu , Dang-guo Cheng
{"title":"Pd/CQDs/TiO2–NH2 composite schottky catalyst for efficient hydrogen production from formic acid dehydrogenation under visible light","authors":"Fengqiu Chen , Qiu Wang , Shengda Lin , Huanhu Luo , Wanjin Yu , Wucan Liu , Dang-guo Cheng","doi":"10.1016/j.ijhydene.2024.11.176","DOIUrl":null,"url":null,"abstract":"<div><div>The development of photocatalytic materials with good adsorption capacity and high visible light activity is essential for efficient and stable photocatalytic hydrogen production from formic acid dehydrogenation. The wide band gap of TiO<sub>2</sub> photocatalyst materials limits their application in the field of visible light catalysis. In this work, a new composite material, Pd/CQDs/TiO<sub>2</sub>–NH<sub>2</sub>, is developed. Here, Pd is attached to amine-functionalized mesoporous titanium dioxide modified with carbon quantum dots (CQDs). This configuration is designed to enhance the catalytic activity for formic acid dehydrogenation when exposed to visible light. The Pd/CQDs-1/TiO<sub>2</sub>–NH<sub>2</sub> catalyst exhibited outstanding performance under visible light, achieving a turnover frequency (TOF) of 2666.1 h<sup>−1</sup> at 308 K and perfect hydrogen selectivity. Compared to the Pd/TiO<sub>2</sub>–NH<sub>2</sub> catalyst with a TOF of 1715.5 h<sup>−1</sup>, this is a significant improvement. The data implies that the addition of CQDs significantly increases light efficiency, aids in the separation of photogenerated charge carriers, and enhances hydrogen production. Ultimately, the experiments clarified how the combined action of Pd, CQDs, and TiO<sub>2</sub>–NH<sub>2</sub> synergistically boosts the catalytic dehydrogenation of formic acid under visible light. The findings present an innovative approach to improving Pd/TiO<sub>2</sub> schottky materials.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1136-1145"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048584","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of photocatalytic materials with good adsorption capacity and high visible light activity is essential for efficient and stable photocatalytic hydrogen production from formic acid dehydrogenation. The wide band gap of TiO2 photocatalyst materials limits their application in the field of visible light catalysis. In this work, a new composite material, Pd/CQDs/TiO2–NH2, is developed. Here, Pd is attached to amine-functionalized mesoporous titanium dioxide modified with carbon quantum dots (CQDs). This configuration is designed to enhance the catalytic activity for formic acid dehydrogenation when exposed to visible light. The Pd/CQDs-1/TiO2–NH2 catalyst exhibited outstanding performance under visible light, achieving a turnover frequency (TOF) of 2666.1 h−1 at 308 K and perfect hydrogen selectivity. Compared to the Pd/TiO2–NH2 catalyst with a TOF of 1715.5 h−1, this is a significant improvement. The data implies that the addition of CQDs significantly increases light efficiency, aids in the separation of photogenerated charge carriers, and enhances hydrogen production. Ultimately, the experiments clarified how the combined action of Pd, CQDs, and TiO2–NH2 synergistically boosts the catalytic dehydrogenation of formic acid under visible light. The findings present an innovative approach to improving Pd/TiO2 schottky materials.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.