Exploring sustainable fuel alternatives: The role of NH3–H2–H2O2 blends in enhancing HCCI engine performance

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-15 DOI:10.1016/j.ijhydene.2024.11.133
Mohamed I. Hassan Ali, Kabbir Ali
{"title":"Exploring sustainable fuel alternatives: The role of NH3–H2–H2O2 blends in enhancing HCCI engine performance","authors":"Mohamed I. Hassan Ali,&nbsp;Kabbir Ali","doi":"10.1016/j.ijhydene.2024.11.133","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive computational analysis of Homogeneous Charge Compression Ignition (HCCI) engines fueled by a carbon-free blend of ammonia (NH<sub>3</sub>), hydrogen (H<sub>2</sub>), and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The research aims to explore the potential of this blend in enhancing combustion performance and reducing emissions, addressing the critical challenge of environmental sustainability in internal combustion engines. Through the use of detailed kinetic modeling and three-dimensional computational fluid dynamics (CFD), the impacts of various blend compositions on key engine performance was assessed. The kinetic model is validated with the published literature data. The findings indicate that the addition of H<sub>2</sub>O<sub>2</sub> significantly improves autoignition and the combustion duration of an NH<sub>3</sub>–H<sub>2</sub> blend in an HCCI engine is 17° at 515 K. However, with the addition of 40% H<sub>2</sub>O<sub>2</sub>, the combustion duration reduces to approximately 16°, even at lower temperatures (395 K). The introduction of 40% H<sub>2</sub>O<sub>2</sub> in the NH<sub>3</sub>–H<sub>2</sub> HCCI engine results in a 12.8% increase in output power and a 22.2% decrease in NO<sub>x</sub> emissions due to the reduced operating temperature under Maximum Brake Torque (MBT) conditions. With a fuel blend of NH<sub>3</sub>-0.7, H<sub>2</sub>-0.2, and H<sub>2</sub>O<sub>2</sub>-0.1 at an inlet temperature of 450 K, the combustion duration (CD) is 22°. Increasing hydrogen to 50% and reducing the inlet temperature to about 390 K decreases the CD to 5°. This study demonstrates that the NH<sub>3</sub>–H<sub>2</sub>–H<sub>2</sub>O<sub>2</sub> blend holds significant promise as a viable alternative to conventional fuels, potentially contributing to the advancement of zero-carbon emission combustion technologies in future transportation systems.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 782-794"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048134","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive computational analysis of Homogeneous Charge Compression Ignition (HCCI) engines fueled by a carbon-free blend of ammonia (NH3), hydrogen (H2), and hydrogen peroxide (H2O2). The research aims to explore the potential of this blend in enhancing combustion performance and reducing emissions, addressing the critical challenge of environmental sustainability in internal combustion engines. Through the use of detailed kinetic modeling and three-dimensional computational fluid dynamics (CFD), the impacts of various blend compositions on key engine performance was assessed. The kinetic model is validated with the published literature data. The findings indicate that the addition of H2O2 significantly improves autoignition and the combustion duration of an NH3–H2 blend in an HCCI engine is 17° at 515 K. However, with the addition of 40% H2O2, the combustion duration reduces to approximately 16°, even at lower temperatures (395 K). The introduction of 40% H2O2 in the NH3–H2 HCCI engine results in a 12.8% increase in output power and a 22.2% decrease in NOx emissions due to the reduced operating temperature under Maximum Brake Torque (MBT) conditions. With a fuel blend of NH3-0.7, H2-0.2, and H2O2-0.1 at an inlet temperature of 450 K, the combustion duration (CD) is 22°. Increasing hydrogen to 50% and reducing the inlet temperature to about 390 K decreases the CD to 5°. This study demonstrates that the NH3–H2–H2O2 blend holds significant promise as a viable alternative to conventional fuels, potentially contributing to the advancement of zero-carbon emission combustion technologies in future transportation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索可持续燃料替代品:NH3-H2-H2O2 混合物在提高 HCCI 发动机性能方面的作用
本研究对以氨气 (NH3)、氢气 (H2) 和过氧化氢 (H2O2) 的无碳混合物为燃料的均相充量压燃 (HCCI) 发动机进行了全面的计算分析。研究旨在探索这种混合物在提高燃烧性能和减少排放方面的潜力,从而解决内燃机在环境可持续发展方面面临的严峻挑战。通过使用详细的动力学模型和三维计算流体动力学(CFD),评估了各种混合成分对发动机关键性能的影响。动力学模型与已发表的文献数据进行了验证。研究结果表明,添加 H2O2 能显著改善自燃,在 515 K 时,NH3-H2 混合物在 HCCI 发动机中的燃烧持续时间为 17°;然而,添加 40% 的 H2O2 后,即使在较低温度(395 K)下,燃烧持续时间也会缩短至约 16°。在最大制动扭矩(MBT)条件下,由于工作温度降低,NH3-H2 HCCI 发动机引入 40% H2O2 后,输出功率增加了 12.8%,氮氧化物排放量减少了 22.2%。在入口温度为 450 K 时,混合燃料为 NH3-0.7、H2-0.2 和 H2O2-0.1,燃烧持续时间 (CD) 为 22°。将氢气增加到 50%,并将入口温度降低到约 390 K 时,CD 下降到 5°。这项研究表明,NH3-H2-H2O2 混合燃料作为传统燃料的可行替代品前景广阔,有可能促进未来运输系统中零碳排放燃烧技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1