La0.3Sr0.7Ti0.3Fe0.7O3-δ derived from Malaysian ilmenite and monazite for application of solid oxide fuel cell cathode

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-16 DOI:10.1016/j.ijhydene.2024.11.206
Muhammad Zaid Ahmad , Sahrim Haji Ahmad , Ruey Shan Chen , Aznan Fazli Ismail , Mahendra Rao Somalu , Roshasnorlyza Hazan
{"title":"La0.3Sr0.7Ti0.3Fe0.7O3-δ derived from Malaysian ilmenite and monazite for application of solid oxide fuel cell cathode","authors":"Muhammad Zaid Ahmad ,&nbsp;Sahrim Haji Ahmad ,&nbsp;Ruey Shan Chen ,&nbsp;Aznan Fazli Ismail ,&nbsp;Mahendra Rao Somalu ,&nbsp;Roshasnorlyza Hazan","doi":"10.1016/j.ijhydene.2024.11.206","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effect of using low-purity oxides in synthesizing lanthanum strontium titanate ferrite (LSTF) on its electrochemical performance as a solid oxide fuel cell (SOFC) cathode material. Lanthanum oxide at 30% and 60% purity is extracted from monazite, and iron oxide at 70% and 90% purity is extracted from ilmenite as the LSTF precursor. Symmetrical pellets are fabricated from yttria-stabilized zirconia (YSZ) as the electrolyte, samarium-doped ceria (SDC) as the buffer layer, and silver paste as the current-collecting layer (CCL). Results from electrochemical impedance spectroscopy (EIS) demonstrate that LSTF made from extracted lanthanum with low purity shows comparable electrical performance with a polarity resistance (Rp) of below 0.2 Ω at operational temperature of 800 °C compared to LSTF made from commercial ingredients, while LSTF made from extracted iron shows equal performance only with high-purity ingredients. LSTF made with extracted lanthanum and iron exhibits an Rp of 0.5 Ω and does not show comparable performance with LSTF made with commercial ingredients, likely due to a high variety of impurities. Based on this study, LSTFLa30 and LSTFFe90 show high potential for SOFC cathode applications at operating temperatures in the range of 700–800 °C.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1247-1256"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048882","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of using low-purity oxides in synthesizing lanthanum strontium titanate ferrite (LSTF) on its electrochemical performance as a solid oxide fuel cell (SOFC) cathode material. Lanthanum oxide at 30% and 60% purity is extracted from monazite, and iron oxide at 70% and 90% purity is extracted from ilmenite as the LSTF precursor. Symmetrical pellets are fabricated from yttria-stabilized zirconia (YSZ) as the electrolyte, samarium-doped ceria (SDC) as the buffer layer, and silver paste as the current-collecting layer (CCL). Results from electrochemical impedance spectroscopy (EIS) demonstrate that LSTF made from extracted lanthanum with low purity shows comparable electrical performance with a polarity resistance (Rp) of below 0.2 Ω at operational temperature of 800 °C compared to LSTF made from commercial ingredients, while LSTF made from extracted iron shows equal performance only with high-purity ingredients. LSTF made with extracted lanthanum and iron exhibits an Rp of 0.5 Ω and does not show comparable performance with LSTF made with commercial ingredients, likely due to a high variety of impurities. Based on this study, LSTFLa30 and LSTFFe90 show high potential for SOFC cathode applications at operating temperatures in the range of 700–800 °C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从马来西亚钛铁矿和独居石中提取的 La0.3Sr0.7Ti0.3Fe0.7O3-δ 在固体氧化物燃料电池阴极中的应用
本研究探讨了在合成钛酸镧锶铁氧体(LSTF)时使用低纯度氧化物对其作为固体氧化物燃料电池(SOFC)阴极材料的电化学性能的影响。作为 LSTF 的前驱体,从独居石中提取了纯度分别为 30% 和 60% 的氧化镧,从钛铁矿中提取了纯度分别为 70% 和 90% 的氧化铁。以钇稳定氧化锆(YSZ)为电解质,掺钐铈(SDC)为缓冲层,银浆为集流层(CCL),制成了对称的颗粒。电化学阻抗光谱(EIS)结果表明,与使用商业成分制成的 LSTF 相比,使用低纯度萃取镧制成的 LSTF 在 800 °C 工作温度下的电气性能相当,极性电阻(Rp)低于 0.2 Ω,而使用高纯度成分萃取铁制成的 LSTF 性能相当。用提取的镧和铁制成的 LSTF 的 Rp 为 0.5 Ω,其性能无法与用商业成分制成的 LSTF 相提并论,这可能是由于杂质种类较多所致。根据这项研究,LSTFLa30 和 LSTFFe90 在工作温度为 700-800 ℃ 的 SOFC 阴极应用中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1