Renwei Li , Mingyi Zhang , Wansheng Pei , Zhao Duan , Haitao Jin , Xin Li
{"title":"Comparative study of thaw settlement susceptibility mapping for the Qinghai-Tibet Plateau based on index and machine learning models","authors":"Renwei Li , Mingyi Zhang , Wansheng Pei , Zhao Duan , Haitao Jin , Xin Li","doi":"10.1016/j.coldregions.2024.104354","DOIUrl":null,"url":null,"abstract":"<div><div>Climate warming has caused frequent thaw settlement in the permafrost region of the Qinghai-Tibet Plateau (QTP), significantly threatening the ecological environment and infrastructure. This study assesses thaw settlement susceptibility using index and machine learning (ML) models and compares their accuracies. The settlement index (Is), risk zonation index (Ir), and geohazard index (Ia) models were selected to map thaw settlement susceptibility, and their results were combined to construct a comprehensive index (Ic) model using a majority vote criterion. Based on 12 conditioning factors related to topography, soil, vegetation, and climate, susceptibility studies using artificial neural network (ANN), K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) models were conducted. The results indicate that although the Ic model improves the accuracies of the Is, Ir and Ia models, it remains limited, with 75.06% of thaw settlements occurring in low and moderate susceptibility areas. Conversely, the ML models demonstrated superior accuracy, with the RF model performing the best, which remained only 13.87% of thaw settlements in low to moderate susceptibility regions, effectively pinpointing the Qiangtang Plateau (QP) and Three Rivers Source (TRS) region as high susceptibility areas. Notably, the Budongquan-Beiluhe sections of the Qinghai-Tibet Highway (QTH) and Qinghai-Tibet Railway (QTR) were identified as potential high-risk regions for thaw settlement. These findings offer valuable insights for thaw settlement susceptibility evaluation and disaster risk management in the QTP.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"229 ","pages":"Article 104354"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002350","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Climate warming has caused frequent thaw settlement in the permafrost region of the Qinghai-Tibet Plateau (QTP), significantly threatening the ecological environment and infrastructure. This study assesses thaw settlement susceptibility using index and machine learning (ML) models and compares their accuracies. The settlement index (Is), risk zonation index (Ir), and geohazard index (Ia) models were selected to map thaw settlement susceptibility, and their results were combined to construct a comprehensive index (Ic) model using a majority vote criterion. Based on 12 conditioning factors related to topography, soil, vegetation, and climate, susceptibility studies using artificial neural network (ANN), K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) models were conducted. The results indicate that although the Ic model improves the accuracies of the Is, Ir and Ia models, it remains limited, with 75.06% of thaw settlements occurring in low and moderate susceptibility areas. Conversely, the ML models demonstrated superior accuracy, with the RF model performing the best, which remained only 13.87% of thaw settlements in low to moderate susceptibility regions, effectively pinpointing the Qiangtang Plateau (QP) and Three Rivers Source (TRS) region as high susceptibility areas. Notably, the Budongquan-Beiluhe sections of the Qinghai-Tibet Highway (QTH) and Qinghai-Tibet Railway (QTR) were identified as potential high-risk regions for thaw settlement. These findings offer valuable insights for thaw settlement susceptibility evaluation and disaster risk management in the QTP.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.