Hoang-Tien Cao, Jeng-Rong Ho, Pi-Cheng Tung, Hai-Ping Tsui, Chih-Kuang Lin
{"title":"Characterization of machined surface in semi-conductive SiC wafer subjected to micro-EDM drilling","authors":"Hoang-Tien Cao, Jeng-Rong Ho, Pi-Cheng Tung, Hai-Ping Tsui, Chih-Kuang Lin","doi":"10.1016/j.mssp.2024.109118","DOIUrl":null,"url":null,"abstract":"<div><div>Semi-conductive silicon carbide (semi-SiC) wafers are essential in the semiconductor industry, but their high hardness and brittleness make traditional machining difficult. Electric discharge machining (EDM) is an alternative method for machining semi-SiC wafer. This study investigates the effects of discharge energy parameters, such as pulse-on time and peak current, on the surface and subsurface characteristics of semi-SiC wafers subjected to micro-EDM drilling. The machined surface and subsurface morphology and microstructure were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). SEM micrographs revealed the presence of craters, resolidified material, cracks, and micro-pores on the machined surface, influenced by the thermal energy generated during the EDM process. The material removal mechanisms identified include melting, vaporization, spalling, and oxidation. EDS analyses indicated a larger discharge energy led to an increase in carbon and oxygen concentrations on the machined surfaces, likely due to the decomposition of SiC and oxidation during EDM. XPS analysis identified the presence of graphite, SiO<sub>2</sub>, Cu particles, Cu<sub>2</sub>O, and CuO on the machined surface. TEM micrographs revealed three distinct regions in the subsurface, namely a recast layer, a heat-affected zone (HAZ), and the unaffected bulk SiC. These layers exhibited different microstructures, with the thickness of the recast layer and HAZ being dependent on the discharge energy. This study highlights the advantages of micro-EDM over other techniques, achieving a thin recast layer and minimal HAZ, thereby preserving the surface and subsurface integrity of the semi-SiC wafer.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109118"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012401014X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-conductive silicon carbide (semi-SiC) wafers are essential in the semiconductor industry, but their high hardness and brittleness make traditional machining difficult. Electric discharge machining (EDM) is an alternative method for machining semi-SiC wafer. This study investigates the effects of discharge energy parameters, such as pulse-on time and peak current, on the surface and subsurface characteristics of semi-SiC wafers subjected to micro-EDM drilling. The machined surface and subsurface morphology and microstructure were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). SEM micrographs revealed the presence of craters, resolidified material, cracks, and micro-pores on the machined surface, influenced by the thermal energy generated during the EDM process. The material removal mechanisms identified include melting, vaporization, spalling, and oxidation. EDS analyses indicated a larger discharge energy led to an increase in carbon and oxygen concentrations on the machined surfaces, likely due to the decomposition of SiC and oxidation during EDM. XPS analysis identified the presence of graphite, SiO2, Cu particles, Cu2O, and CuO on the machined surface. TEM micrographs revealed three distinct regions in the subsurface, namely a recast layer, a heat-affected zone (HAZ), and the unaffected bulk SiC. These layers exhibited different microstructures, with the thickness of the recast layer and HAZ being dependent on the discharge energy. This study highlights the advantages of micro-EDM over other techniques, achieving a thin recast layer and minimal HAZ, thereby preserving the surface and subsurface integrity of the semi-SiC wafer.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.