{"title":"Mitigating false negatives in imbalanced datasets: An ensemble approach","authors":"Marcelo Vasconcelos , Luís Cavique","doi":"10.1016/j.eswa.2024.125674","DOIUrl":null,"url":null,"abstract":"<div><div>Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimize False Negative Rates (FNR) in imbalanced datasets. The new approach strategically combines data-level, algorithmic-level, and hybrid-level approaches to enhance overall predictive capabilities while minimizing computational resources using the Set Covering Problem (SCP) formulation. Through a comprehensive evaluation of diverse datasets, MinFNR consistently outperforms individual algorithms, showing its potential for applications where the cost of false negatives is substantial, such as fraud detection and medical diagnosis. This work also contributes to ongoing efforts to improve the reliability and effectiveness of machine learning algorithms in real imbalanced scenarios.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125674"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025417","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimize False Negative Rates (FNR) in imbalanced datasets. The new approach strategically combines data-level, algorithmic-level, and hybrid-level approaches to enhance overall predictive capabilities while minimizing computational resources using the Set Covering Problem (SCP) formulation. Through a comprehensive evaluation of diverse datasets, MinFNR consistently outperforms individual algorithms, showing its potential for applications where the cost of false negatives is substantial, such as fraud detection and medical diagnosis. This work also contributes to ongoing efforts to improve the reliability and effectiveness of machine learning algorithms in real imbalanced scenarios.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.