In-situ synthesis of synergistic ZnMn2O4/MnOOH nanocomposite as a cutting-edge pseudocapacitive electrode material for all-solid-state asymmetric supercapacitors

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2024-09-24 DOI:10.1016/j.ceramint.2024.09.326
Yu Zhao , K. Sunil Kumar , Mohamed A. Ghanem , Nipa Roy , Jong Su Kim , Sang Woo Joo
{"title":"In-situ synthesis of synergistic ZnMn2O4/MnOOH nanocomposite as a cutting-edge pseudocapacitive electrode material for all-solid-state asymmetric supercapacitors","authors":"Yu Zhao ,&nbsp;K. Sunil Kumar ,&nbsp;Mohamed A. Ghanem ,&nbsp;Nipa Roy ,&nbsp;Jong Su Kim ,&nbsp;Sang Woo Joo","doi":"10.1016/j.ceramint.2024.09.326","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, there has been a growing interest in constructing metal oxide composite structures through the <em>in-situ synthesis</em> method, especially for fabricating electrode materials for supercapacitors. This approach offers several advantages, such as improved contact between different materials, enhanced conductivity, efficient ion diffusion, and better overall electrochemical performance. This work investigates the synthesis of zinc manganese oxide and manganese oxyhydroxide (ZnMn<sub>2</sub>O<sub>4</sub>/MnOOH) composite using a solvothermal method. The structure, surface morphology, and composition of the ZnMn<sub>2</sub>O<sub>4</sub>/MnOOH composite were elucidated using standard physicochemical characterization techniques where the presence of ZnMn<sub>2</sub>O<sub>4</sub> and MnOOH phases was confirmed and the ZnMn<sub>2</sub>O<sub>4</sub>/MnOOH nanocomposite behaved as a pseudocapacitive electrode with a notable specific capacitance of 1039.2 F g⁻<sup>1</sup> at a current density of 1 A g⁻<sup>1</sup>. When subjected to a 10-fold increase in current density, the ZnMn<sub>2</sub>O<sub>4</sub>/MnOOH electrode maintained 50 % of its initial capacity, registering 513.4 F g⁻<sup>1</sup>. Additionally, the electrode showcased excellent cyclic stability, preserving 95 % of its initial capacity after 5000 cycles at 10 A g⁻<sup>1</sup>. Moreover, the constructed ZnMn<sub>2</sub>O<sub>4</sub>/MnOOH//activated carbon (AC) asymmetric supercapacitor (ASC) device attained a high energy density of 29.45 Wh kg⁻<sup>1</sup> at a power density of 1384.5 W kg⁻<sup>1</sup>. The results confirm that the ZnMn<sub>2</sub>O<sub>4</sub>/MnOOH composite, prepared in a single synthesis step, shows great potential as a phenomenal pseudocapacitive electrode for energy storage applications.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49834-49845"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043621","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, there has been a growing interest in constructing metal oxide composite structures through the in-situ synthesis method, especially for fabricating electrode materials for supercapacitors. This approach offers several advantages, such as improved contact between different materials, enhanced conductivity, efficient ion diffusion, and better overall electrochemical performance. This work investigates the synthesis of zinc manganese oxide and manganese oxyhydroxide (ZnMn2O4/MnOOH) composite using a solvothermal method. The structure, surface morphology, and composition of the ZnMn2O4/MnOOH composite were elucidated using standard physicochemical characterization techniques where the presence of ZnMn2O4 and MnOOH phases was confirmed and the ZnMn2O4/MnOOH nanocomposite behaved as a pseudocapacitive electrode with a notable specific capacitance of 1039.2 F g⁻1 at a current density of 1 A g⁻1. When subjected to a 10-fold increase in current density, the ZnMn2O4/MnOOH electrode maintained 50 % of its initial capacity, registering 513.4 F g⁻1. Additionally, the electrode showcased excellent cyclic stability, preserving 95 % of its initial capacity after 5000 cycles at 10 A g⁻1. Moreover, the constructed ZnMn2O4/MnOOH//activated carbon (AC) asymmetric supercapacitor (ASC) device attained a high energy density of 29.45 Wh kg⁻1 at a power density of 1384.5 W kg⁻1. The results confirm that the ZnMn2O4/MnOOH composite, prepared in a single synthesis step, shows great potential as a phenomenal pseudocapacitive electrode for energy storage applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位合成协同作用的 ZnMn2O4/MnOOH 纳米复合材料,作为全固态不对称超级电容器的尖端伪电容电极材料
目前,人们越来越关注通过原位合成法构建金属氧化物复合结构,尤其是用于制造超级电容器的电极材料。这种方法具有多种优势,如改善不同材料之间的接触、增强导电性、高效离子扩散和更好的整体电化学性能。本研究采用溶热法合成了氧化锰锌和氢氧化锰(ZnMn2O4/MnOOH)复合材料。采用标准的物理化学表征技术阐明了 ZnMn2O4/MnOOH 复合材料的结构、表面形貌和成分,证实了 ZnMn2O4 和 MnOOH 相的存在,ZnMn2O4/MnOOH 纳米复合材料表现为伪电容电极,在电流密度为 1 A g-1 时,比电容高达 1039.2 F g-1。当电流密度增加 10 倍时,ZnMn2O4/MnOOH 电极的电容量保持在初始电容量的 50%,达到 513.4 F g-1。此外,该电极还具有出色的循环稳定性,在 10 A g-1 条件下循环 5000 次后,仍能保持 95% 的初始容量。此外,所构建的 ZnMn2O4/MnOOH// 活性碳(AC)非对称超级电容器(ASC)装置在功率密度为 1384.5 W kg-1 的情况下实现了 29.45 Wh kg-1 的高能量密度。这些结果证实,只需一步合成就能制备的 ZnMn2O4/MnOOH 复合材料作为一种神奇的伪电容电极,在储能应用中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Polyetherimide copolymer film with room-temperature self-healing properties and high breakdown field strength Effect of epoxy resin addition on the acoustic impedance, microstructure, dielectric and piezoelectric properties of 1–3 connectivity lead-free barium zirconate titanate ceramic cement-based composites High-efficiency 1.6 μm-band fiber laser based on single Er3+-doped tungsten tellurite glass with high mechanical strength through tailored glass network Improvement of energy storage properties of BNT-based ceramics via compositional modification Effects of mechanical alloying methods on structural phase stability, chemical state, optical, electrical and ferroelectric properties in Sc-doped α-Fe2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1