Panting Wang , Mingjun Zhao , Weichang Li , Danping Chen
{"title":"X-ray-induced long persistent luminescence of Cu+-doped high alumina borosilicate glass","authors":"Panting Wang , Mingjun Zhao , Weichang Li , Danping Chen","doi":"10.1016/j.ceramint.2024.09.328","DOIUrl":null,"url":null,"abstract":"<div><div>A Cu<sup>+</sup> doped high alumina borosilicate glass with long persistent luminescence (LPL) was prepared by reduction melting and radiation induction based on glass defect engineering. The maximum time of the persistent luminescence can arrive 16 h. Spectral and EPR measurements indicate that two kinds of oxygen defects can be induced by X-ray radiation. One defect was eliminated after UV irradiation, and the other can synergistically participate in the LPL process of glass with reduction induced oxygen deficiency centers(ODCs). In addition, there is a highly linear relationship between the initial LPL intensity of the glass and the radiation dose; which implies the glass can be used as a radiation detection material. The internal mechanism of the linear relationship and LPL was discussed.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49846-49852"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A Cu+ doped high alumina borosilicate glass with long persistent luminescence (LPL) was prepared by reduction melting and radiation induction based on glass defect engineering. The maximum time of the persistent luminescence can arrive 16 h. Spectral and EPR measurements indicate that two kinds of oxygen defects can be induced by X-ray radiation. One defect was eliminated after UV irradiation, and the other can synergistically participate in the LPL process of glass with reduction induced oxygen deficiency centers(ODCs). In addition, there is a highly linear relationship between the initial LPL intensity of the glass and the radiation dose; which implies the glass can be used as a radiation detection material. The internal mechanism of the linear relationship and LPL was discussed.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.