{"title":"High purity H2 resource from methanol steam reforming at low-temperature by spinel CuGa2O4 catalyst for fuel cell","authors":"Gaokui Chen, Qiuwan Shen, Xin Zhang, Tianyun Zhao, Kuanyu Zhu, Shian Li","doi":"10.1016/j.ceramint.2024.09.319","DOIUrl":null,"url":null,"abstract":"<div><div>Methanol steam reforming (MSR) is an effective way to provide high purity hydrogen for PEMFCs, however the main challenge is the toxic effect of CO. In this study, CuGa<sub>2</sub>O<sub>4</sub> spinel catalyst was applied first for MSR at low temperature. The properties of catalysts were characterized by various techniques, the MSR catalytic performance was also studied in deeply. The surface of the catalyst is composed of particle chains that are interconnected, forming high-volume pores that increase the specific surface area. The catalyst also has a rich porous structure, exposing more active sites. Furthermore, the presence of oxygen vacancies facilitates the adsorption of reactive oxygen species, reducing CO generation. A possible pathway for methanol dehydrogenation has been determined using DFT calculations. The relatively low overall energy barrier on the catalyst surface facilitates methanol activation. Among the steps, formaldehyde dehydrogenation is the rate-determining step in the methanol dehydrogenation process. The CuGa<sub>2</sub>O<sub>4</sub> catalyst exhibits good gas selectivity, with a hydrogen selectivity of 98 % and CO selectivity of 0. and no deactivation occurred within 50 h, demonstrating outstanding durability. These features allow it to serve as an efficient catalyst for MSR online hydrogen production and direct supply to PEMFCs.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49759-49769"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043542","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Methanol steam reforming (MSR) is an effective way to provide high purity hydrogen for PEMFCs, however the main challenge is the toxic effect of CO. In this study, CuGa2O4 spinel catalyst was applied first for MSR at low temperature. The properties of catalysts were characterized by various techniques, the MSR catalytic performance was also studied in deeply. The surface of the catalyst is composed of particle chains that are interconnected, forming high-volume pores that increase the specific surface area. The catalyst also has a rich porous structure, exposing more active sites. Furthermore, the presence of oxygen vacancies facilitates the adsorption of reactive oxygen species, reducing CO generation. A possible pathway for methanol dehydrogenation has been determined using DFT calculations. The relatively low overall energy barrier on the catalyst surface facilitates methanol activation. Among the steps, formaldehyde dehydrogenation is the rate-determining step in the methanol dehydrogenation process. The CuGa2O4 catalyst exhibits good gas selectivity, with a hydrogen selectivity of 98 % and CO selectivity of 0. and no deactivation occurred within 50 h, demonstrating outstanding durability. These features allow it to serve as an efficient catalyst for MSR online hydrogen production and direct supply to PEMFCs.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.